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Introduction

Elementary topoi [5], [15], [10], [4], [16], [26] are categories with many aspects in common with
the category of sets, but they also generalize sheaf categories Top(X) as well as categories of
continuous discrete representations of topological groups Bg, and many others [1], [15], [9], [16],
[26].

Any elementary topos E has the rudiments of algebra, i.e. all finite inverse limits, and
in the same way as the classical logic is coded into the category of sets by means of the two
element set 2 we have an intuitionistic logic built into the subobject classifier Q in E, but the
way mathematics develop in E is in the interaction of these concepts and higher order which
lives in E in the form of power objects, much like power sets in Sets.

For various purposes one may assume that elementary topoi have additional properties such
as satisfying the axiom of infinity, being Boolean or even satisfying the axiom of choice [15], but
here we shall primarily be interested in the properties indicated above and which are common
to all elementary topoi.

Any construction which can be performed in an elementary topos E in accordance with
the axioms generally allows an internal form, i.e. a combinator which is a morphism in E
constructed out of the axioms in such a way that evaluating the combinator on global sections
yields cases of the original construction and such that the combinator is preserved by logical
functors, in particular by the functors ( ) x A : E — E/A. Tt follows from the principle of
extensionality for categories that these properties characterize the combinators. Furthermore,
the essential properties of a construction are coded into its combinator in an equational or
equally well understood way.

We shall apply the combinators extensively in the presentation. The idea is that we may
as well construct the combinators and derive their properties directly. The constructions in
question can whenever they are needed always be obtained be evaluation. E. g. to see that E
has epi-mono-factorization we construct the combinator associated with this property, namely
the internal existential quantification which to a morphism f : A — B assigns the internal
functor 35 : P(A) — P(B) given explicitly as the composite

Tsegp(a) PP(f) Ng
_

35 = P(A) PP(A)——2 PP(B)—= P(B)

and characterized by 3y 4 P(f), i.e. the internal existential quantification along f is left adjoint

to the internal substitution along f, and we may define the image of f by the equation:

Cehp(im(f))" = Ttruea™ o 3y.
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The virtue of this approach is that we are now able to single out the essential points in
the arguments via the properties of the combinators, and most proofs reduce to equational
calculations, to comparison of inequalities or to applying the uniqueness theorem for adjoint
internal functors, and we do not have to use repeatedly boundless diagrammatic constructions.

Originally [5] elementary topoi were defined to be left and right exact cartesian closed
categories with a subobject classifier, and consequently the semantics, and in particular its
existential part, was based on these axioms [21]. We shall prove that the right exactness is a
consequence of the remaining axioms, and therefore we are not allowed to apply at least the
existential part of the semantics in our arguments. For this reason we shall derive directly
the elementary description for most of the constructions we perform, but we shall also do so
because this is the way semantics comes about. The semantics is not a logical system we have
got to learn before we can do anything else.

Due to the fact that the logic of an elementary topos E is not necessarily Boolean we
now have the possibility of investigating the logical invariance of properties of a mathematical
concept. The example in appendix 2 shows that the property that an arbitrary subobject of a
finite object is itself finite is accidental, i.e. it depends on the logic in E. Indeed, this property
is valid iff the logic in E is Boolean. On the other hand, all the remaining properties usually
connected with the concept of finiteness are consequences of this concept itself, i.e. they are
independent of the logic in E and valid in all elementary topoi.

The outcome of pointwise investigations of this kind may, as the example shows, be rather
surprising, but there is still a much more dynamic question to be resolved: To what extent
is a mathematical concept preserved by geometric functors on elementary topoi? In the case
of local homeomorphisms, i.e. when the inverse image functor is logical, any construction
based on the axioms will be preserved by the inverse image functor. Despite the trivial nature
of this statement it is extremely important, allowing the good notion of combinators. As
for the general case of geometric functors we shall make a detailed study of this question of
invariance for internal completeness of internally ordered objects, for universal quantification,
for the principle of transfinite induction and for the concept of Sierpinski-finiteness. The ideas
involved in these studies are quite general and may easily be applied to other situations.

By studying a mathematical concept relative to an elementary topos E we may grind the
concept such that it becomes a more efficient mathematical tool. E.g. studying the concept
of an atom in E allows us to establish not only Stone’s characterization of power objects in E
explaining the tripleability of P : E°? — E, but we also see that the ground concept of atoms
is now strong enough to verify that a logical functor with a right adjoint is essential, i.e. it has
a left adjoint, as well as to prove that if X is a finite object in E, then K (X) is also finite (in
Sets this means that the set of finite subsets of a finite set is a finite set itself).

The title “Lattice Theoretic and Logical Aspects of Elementary Topoi” may be a bit mis-
leading as it refers to the methods of proof rather than to the content itself. Indeed, what
this work is actually about is an investigation of some of the naive set theoretical methods and
results of the 20’s and 30’s studied in the context of elementary topoi, not only in order to
obtain a better understanding of these ideas themselves by viewing them under the new pos-

sibility of changing the logic and the universe of discourse, but also in order to apply some of
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these powerful ideas of Sierpinski, Stone, Tarski and other mathematicians of these decades not
only to elementary topoi one by one but also to the continuous transformation along geometric
functors.

I would like to thank A. J. Kock and G. C. Wraith for explaining the subject to me in
their lectures on “Elementary Toposes”, F. W. Lawvere for pointing out the possibilities of
Mathematics in his lectures on ”The Foundation of Analysis”, and all three of them for their

capable mathematical guidance, discussions, criticism and personal friendship.



Chapter 1

Definition and Technical Tools

An elementary topos is a left exact category E with an exponentiable subobject classifier
true: 1 — Q.

Thus an elementary topos E has a terminal object 1, binary cartesian products and equal-
izers.

For each object X in E the map
inx : Homg(X, Q) — P.(X)

which to a morphism f : X — () assigns the subobject of X which is represented by the inverse
image of true along f is a bijection.
The elements of the set Homg (X, ) will be called characters, and the inverse of inx will
be denoted chx.
Finally, the exponentiability of the subobject classifier means that there exists a contravari-
ant functor
P.E? - E

and a natural isomorphism
¢p,a : Homg (B x A,Q) — Homg (B, P(A)).

If f € Homg(A, B) we shall think of f as a map from A to B or as an element of B defined
on A, and accordingly we shall use the notation f : A — B or f € B. The latter symbol
suppresses the domain of definition of f but as this is always a well-defined object in E the
missing index will cause no ambiguity.

We begin the study of elementary topoi with a result which is due to A. Kock.
Theorem 1.1. Any elementary topos E is cartesian closed, i.e. it has exponentiation.

Proof. First we observe that the internal power objects (i.e. the objects of the form P(A)) are
exponentiable.

Indeed, if A € |E| then the contravariant functor
Py E” - E
given by P4(B) = P(B x A) and Ps(f) = P(f X id4) and the natural isomorphism
dc B4 : Homg(C x B, P(A)) — Homg(C, Pa(B))

1



CHAPTER 1. DEFINITION AND TECHNICAL TOOLS 2

determined uniquely by the following commutative diagram
Homg(C x B, P(A)) ———%— Homg(C, Pa(B))
Homg((C x B) x A4,Q) «+—*— Homg(C x (B x A),9),

ie dopa= CE'le,A o aE’IB’A* o co,BxA Proves that the object P(A) is exponentiable.
Recall the construction of { } 4 : A — P(A) of the diagonal on A under the bijection:

P.(Ax A)—" Homg(A x A,Q)—Homg(A, P(A))

Apr—da—{}a

IfNe|El abeA (ie a,be Homg(N,A)) then

ao{}ta=bo{}a iff
axidgods=bxidaoda iff
(idn,a) = (idn,b) iff
a="b

ie. {}a:A— P(A) is a monomorphism.
Consider the pull back diagram

PA) ——Q

I{ Ya true

A———1

i.e. SA = Chp(A)({ }A)
As the transformation dE.lB 4084« 0cc,p is natural in C' and B there exists, by the Yoneda

lemma, a uniquely determined morphism
SB,A: PA(B) — P(B)

such that the diagram

SB,Ax

Homg(C, Pa(B)) Homg(C, P(B))

)l\dc,B,A W\CC,B

Homg(C x B, P(A)) —— 2 Homg(C x B,Q),

is commutative and such that sp 4 is natural in B, i.e. such that for all f € Homg(B, D)

SB,A

PA(B) ———"——P(B) __
Ttrueg™
}am P(f) 1
Ttruep”
PiD)— 2" p(D)"
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is a commutative diagram.
Thus if we define AB and T'g 4 by the following pull back

SB,A

Pa(B) ———— P(B)

IFB,A I"trues—'

AB 1

we have that the assignment B — AP extends to a subfunctor of the functor P4, i.e. given

f € Homg(B, D) there exists a uniquely determined morphism Af : AP — AP such that

Pa(f)
Py(D) ———————— Pa(B)

IFD,A IFB,A

Af

AP AB
is commutative.
Now
fr:C— AP iff
fa:C — Pa(B) and faosp a4 = !cotrueg” iff
f3:Cx B — P(A) and f30s4 =truecxp iff
fi:CxB— A

under fo = fi0I'p 4 and d&}B7A(f2) = f3 = fao{ }a, from which it follows that there exists a

bijection d¢ g 4, natural in C' and B making the diagram

dc,B,A

Homg(C x B, P(A)) Homg (C, Pa(B))

{}a. I'pa.

QC,B,A

Homg(C x B, A) Homg(C, AB),

commutative.
Thus the assignment A — AP may be extended to a covariant functor ( ) from E to E
such that d becomes a natural isomorphism, i.e. we have that () x B 4 ()5.

This concludes the proof of Theorem 1.1. O
The cartesian adjunction
do g 4 Homg(C x B, A) — Homg(C, AP)
comes in the usual way [3] with a pair of (super-) natural transformations:
uc.p:C — (C x B)B

evB,A:AB x B — A.
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Notice that the functor P is natural isomorphic to Q() by the uniqueness theorem for adjoint
bifunctors. Thus we may assume that P = Q0), but we shall keep the notation P for typo-

graphical reasons.

Ifi: A— X is a monomorphism in E, then i is the equalizer of chx (i) and truex =!x otrue
by the definition of characters. It follows that E is balanced.

E is well-powered as chx : P.(X) — Homg(X,2) is an isomorphism. This means that Px

extends by pull backs to a contravariant functor
P, : E°? — Sets.

Notice that this functor factors through Ls, the category of lower semilattices with greatest
element and left exact maps, and that P, is representable by the subobject classifier via the

natural isomorphism
(1)  chx : Po(X)— Homg(X, Q).

From this it follows that  carries a uniquely determined lower semilattice structure with
true : 1 » Q) the greatest global section, and such that the natural isomorphism (1) lives in
Ls.

As the functors ( )* : E — E are left exact, these functors induce 2-functors on the 2-
category Ls(E) of lower semilattice objects and left exact morphisms in E, and therefore the
lower semilattice object (2, A,true) in E induces an Ls(E)-structure on the internal power
objects P(A) in E. Observe that this structure (P(A), Ap(a), truea™) on P(A) is determined
by the fact that the natural isomorphism

chpxa

(2)  P.(Bx A)—2 , Homg (B x A,Q) — s Homg (B, P(A))

lives in Ls.

Combining the classifying property of Q@ and the exponential adjointness as in (2) shows
that a relation R — B x A corresponds under chpx 4 to a character ch(R) : B x A —  which
again is given via cg 4 by a morphism tsegr : B — P(A) (the -segment of the relation R). In
particular we see that

ch(R) =Tsegr X idg o evy q.

Based on these observations we define the universal ¢ relation on A by the following
pull back diagram

Q

P(A)x A—"" 4 Q

true

!
€4 — 1.

The fact that the relation R — B x A can be obtained as the inverse image of €4 along
Tsegr X id 4 leads us to introduce the following terminology:
IfNelEf MePA) and a€A (ie. M:N — P(A)and a: N — A) we shall

write
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3) aeM iff (M,a)oevy o =truey

i.e. € is a well defined relation on the set
Homg (N, P(A)) x Homg(N, A).
In this terminology we have for a fixed relation R— B x A in E :

VNe|E| YWeB VacA:

b, a) factors through R iff
(b,a) g

(b,a) o ch(R) = truen iff
bo Tsegr,a) o evy g = truen iff
( IR :

a € bo Tsegr

It is important for the understanding to observe that these relations are stable under left-
composition, i.e. if M € |[E| n € N and a € bo tsegr then noa € nobo Tsegr. This is an
easy consequence of the universal property of pull backs.

The elements of Homg (B, P(A)) should be thought of as B-indexed families of subobjects
of A. This point of view is supported by the following:

Extensionality Principle. If M, N € Homg(B,P(A)) i.e. M and N are B-indexed

families of subobjects of A then

M =N if M and N have the same elements, i.e.

VIc|E| VoeB VacA:a € boM iff a € boN.

If R — B x Ais a relation in E, and @ is a property which makes sense in Sets for a binary

relation, then we say that R satisfies the property @ iff VN € |E| the induced relation on the
set Homg (N, B) x Homg(N, A), given by Vb € B Va € A: bRa iff (b,a) factors through R, has
the property Q.

E.g. if R — A x A, we say that R is reflexive iff

VI€|E| YVa€ A : a € ao Tseggr.

We shall not bore the reader with repeating the definitions of transitivity, symmetry and

antisymmetry of a relation in E.

An internally ordered object in E is a pair (A, segr) where A € |E| and fsegr : A — P(A)
is the T-segment of a relation R — A x A which is reflexive, transitive and antisymmetric.
If (A,1segr) is an internally ordered object in E we shall frequently write Tsega =1segr

and use the more suggestive notation

a>b if aRb iff a € botsega (=a € bo fsegr),
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where a and b are elements of A defined on N, say.

Any lower semilattice object (A, A) in E carries a canonical internal order relation which is

constructed by the following equalizer diagram:

AN
R——Ax A2 A
pTo

ie. VNe|E| Va,be A:a<b iff a=aAb.

By applying this to the internal power objects in E we see that the lower semilattice structure
defined by the natural isomorphism (2) defines an internal ordering (the canonical ordering) on
the objects P(A). We shall use the notation (P(A),Tsegp(a)) for this ordering on P(A).

Let us record the defining property of the canonical ordering on P(A):

If Be|E| M,NeP(A) then M <N iff
VIe|E| VWweB Ya€A : a € boM implies a € boN

Notice that the extensionality principle is stating that the canonical ordering tsegp(4) on

P(A) is antisymmetric.
If fe Homg(A,C) I€E MeP(C) and a€ A then
(4) a € MoP(f) iff aof € M.

This rule is one of the most important features of P(f) (the internal substitution along f).

The proof is a direct translation of the supernaturality of ev :
P(f) X idA C€evA 0 = idp(c) X f 0 evC Q-

If (A, 1sega) and (B, Tsegp) are internally ordered objects in E, a morphism f € Homg (A, B)
will be called an internal functor from A to B provided VN € |E| the map

Homg(N, f) : Homg(N, A) — Homg(N, B)
is order-preserving, i.e.
VN e|E| Vz,ye A : <y implies zof<yof.
Notice that we can express that f is an internal functor by the following inequality
Tsega < fo Tsegp o P(f)

Notice that the internal substitution along a morphism is an internal functor.

Let Ord(E) be the 2-category of internally ordered objects in E and internal functors. (The

2-structure comes from the order on the hom sets).

If R — B x A is a relation in E we may consider the inverse relation R™! »» Ax B = R

B x A — A x B, where the isomorphism is the cartesian twist.

The morphism fsegr-1 is denoted Jsegr (the |-segment of the relation R).
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VNelE| YWweB VYacA
(5) b € ao lsegr iff a € bo 1segg.

If R — A x A then R is symmetric iff |segr =fseggr. Likewise R is reflexive iff { } 4 <fsegr

iff { }a4 <lseggr. Also, R is transitive iff one of the four equivalent inequalities is satisfied:

i) lsegr <lsegro lsegp(a) o P(lsegr)
ii) |segr <tsegro Tsegp(a) o P(Tsegr)
iii) Tsegr <lsegro Tsegp(a) o P(lsegr)
iv) tsegr <Tsegro lsegp(ay o P(Tsegr)

If R is reflexive and transitive then i) - iv) are equalities. In this case R is antisymmetric
iff [seggr is monic iff Tsegr is monic.

The involution Tsegr +—]segr makes it possible to introduce the notion of contravariant
internal functors on internally ordered objects in E. If (A, Tseg4) and (B, Tsegp) are in Ord(E),
a morphism g € Homg(A, B) will be called a contravariant internal functor from A to B
provided VN € |E| the map

Homg(N, g) : Homg (N, A) — Homg(N, B)
is order reversing, i.e.
VN e|E| Vz,ye A : <y impliess yog<xog.

or equivalently
lsega < go Tsegp o P(g)

Notice that if (A, Tsega) € |Ord(E)| then |segs is an internal functor from (A, Tsega) to

(P(A),Tsegp(a)), and Tsega is a contravariant internal functor on the same objects.

Any 2-category admits the theory of adjoint 1-cells. For Ord(E) we shall use the following

terminology. If

I
(©) (Atsega) " (B, tseg))
is a diagram in Ord(E) then
fg iff
VN € |E| : Homg(N, f) 4 Homg(N, g) iff
VNe|E| Vae A VYbeB:aof<bifa<boyg iff
fo tsegn =tsega o P(g) if

Jlsegp o P(f) = go lsega iff
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idg < fogand go f <idp.

Adjoint internal functors determine each other uniquely as the order relations are antisym-
metric. If f 4g then f = fogo fand g=go fog. It follows that if f 4 g then

f is monic iff g is epic iff idy = fog
and
f is epic iff g is monic iff go f = idp.

By dualizing we get the notion of contravariant internal functors adjoint on the right. If in

r

(7) (A, 1sega) : (B, tsegp))

r and s are contravariant internal functors then

rLls iff
VN € |E| : Homg(N,r) L Homg(N, s) iff
VNe|E| Vac A VbeB:b<aoriffa<bos iff
so lsega =Tsegp o P(r) iff
ro lsegs =tsega o P(s) iff

idg <rosandidg <sor

etc.

The composition of adjoints and of adjoints on the right follows the classical rules.

The category Ord(E) has finite inverse limits and the forgetful functor from Ord(E) to E

preserves them.

(1,7true) is the terminal object in Ord(E). Notice that any global section in an internally

ordered object in E is automatically an internal functor.

If

AN

Kr—— A B
g

is the underlying equalizer diagram of a pair of internal functors f and g, then
Tsegic = io tsega o P(i)

equips K with the structure of an internally ordered object such that

, f
(K, tsegr) = (A, 1sega) ——+ (B, Tsegs)
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is an equalizer diagram in Ord(E).

If A, B € |E| consider the morphism

(8) pa,p: P(A) x P(B) P(Ax B)x P(Ax B)——— P(Ax B)

P(po)xP(p1) AP(AxB)

which is uniquely determined by the rule:
VYN e |E|] VSe P(A) YI'e P(B) Yac A VYbe B:
(a,b) € (S,TYo pap f a€ S and beT.

If (A, 1sega) and (B, 1segp) are in Ord(E) then

Tsegaxp =Tsegax Tsegp o pa,p

is the order relation on A x B which makes

(A,tsega) — (A x B, tsegaxn) —> (B, Tsegn)

a cartesian product diagram in Ord(E).

If (A, 1sega), (B,1segp) and (C, Tsegc) are in Ord(E) and if o : A x B — C'is an internal
(bi-) functor, we say that o admits an exponential — (o expo —) iff there exists an internal
(bi-) functor —: B°? x C' — A such that

VYNe|E| Vac A YVbe B VYcelC
(9) aob<ec iff a<b—=c
Clearly, o and — determine each other uniquely.

Proposition 1.1. Let =: Q x Q — Q be the exponential adjoint of Tsegq : Q — P(Q), then
= is an internal (bi-) functor and A expo =. (= is called the implication on Q).

We leave the proof of this proposition to the reader as it can be found in any treatment of
elementary topoi, but we shall give the proof of the following proposition which equips 2 with
a binary union.

The idea is the following. As (2, A, true,=) is a Heyting algebra object in E, if it has a

binary union V :  x  — ) this union must satisfy the equation
(10) (aVvb)=c = (a=c)AN(b=¢)

for all elements in  with domain N, N € |E|.
Let s: Q x Q — P(Q) be the exponential adjoint of the morphism

AxDxQLL A x(QAxQ) 5 (QxQ)x(AxQ) ZF axQ 250

where m is the middle four interchange [3], and let V be the upper morphism in the pull back

diagram:
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M——Q
By the construction of V we have that
VYN € |E| Va,beQ aVb=truey iff
VM e|E| VeeQ : (ioa=c)A(iob=c)=c
Proposition 1.2. The operation V : Q x Q — Q is a binary union on €.

Proof.
(a,b)

<
=

QxQ

QD —
~
Q—
IS

N

If Ne|E| Va,b,deQ and a<d and b<d then aVb<d.
Indeed, if M € |[E| Vie N and ioaViob=truey, then

iod=(ioa=1i0d)A(iob=iod) =truey Atruey = truey,

it follows that a vV b < d.

On the other hand, a < a Vb. Indeed, if M € |[E| i € N and ioa = truey, then
VK e|E|l VieM VfeQ

(joioca= f)A(joiob= f)= (truexk = f)A(joiob=f)=fA(joiob= f)=f,

whence ioaViob = truey, and so a < aVb. Dually b < aVb. It follows that (10) is generally
valid.

This concludes the proof of Proposition 1.2. O

Using the fact that the functors ( )# are left exact we see that the internal power objects

are equipped with an implication = p(4) and a binary union Vp(4).
Proposition 1.3. VA € |[E| : |sega o P({ }a) = idp(a).

Proof. VIe E VM € P(A) Yac A:

a € Mo lsegp(A)o P({ }a) iff
ao{}a € Mo |segp(A) iff
ao{}las<M iff
a € M

ie. lsegao P({ }a) =idp(a).
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Proposition 1.3 should be viewed as an internal form of the extensionality principle.

Let (A,1sega) € |Ord(E)|. we shall say that A is internally co-complete iff the internal
functor Jsega : A — P(A) has a left adjoint, denoted supa : P(A) — A (if it exists). supa is

characterized by any of the two equivalent equations
i) supao Tsega =Tsegp(ay o P(lsega)
ii) |sega o P(supa) =lsegao lsegp(a)
as well as by the elementary description :
VN e |E|] VM e P(A) VYac A
(11) Mosupg<a iff M < ao lsega

Dually, (A,1sega) is said to be internally complete iff the contravariant internal functor
1sega : A — P(A) has an adjoint on the right, denoted infy : P(A) — A (if it exists). Again,

infa is characterized by

i) infao lsega =Tsegp(a) o P(1sega)

ii) tsegao lsegp(a) =Tsega o P(infa)
and by the elementary description :

VN e |E|] VM e P(A) Yac A

(12) a< Moinfa iff M < ao fsega

Let us finish this chapter with a few remarks on the functor

P:E” —E.

As P = Q0) we know that P is adjoint to itself on the right.

If we consider P as a covariant functor we have that
(13) E-LE?HE? L E
under the natural isomorphism
Homg(B, P(A)) — Homg (A, P(B))

which is induced by the natural isomorphism ¢ and the cartesian twist.
The unity for this adjoint situation is wy : A — PP(A) which is defined by the following

rule:

VN e|E| VM eP(A) YacA : M € aowgy iff o«

Im
=
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ie. wa = { }ao Tsegpa) (the principal ultrafilters on A).

The monad on E generated by (13) is called the double dualization monad (with respect to
Q) on E. Notice that the multiplication m is given by ma = P(wa).

Observe that w is pointwise monic. Indeed { } 4 is monic by the proof of Theorem 1.1, and

Tsegp(a) is monic due to the antisymmetry of the canonical ordering on P(A).



Chapter 2

Internal Completeness in Elementary Topoi

In this chapter let E be a fixed elementary topos. In the first chapter we saw that the internal
power objects P(A) in E had the structure (P(A), Ap(ay, "truea™, = p(a)) of a Heyting algebra
object, and that the internal substitution morphisms P(f) were internal functors. Our first

aim is to construct adjoints to these internal functors.

Proposition 2.1. Let f € Homg(A, B) then the internal functor P(f) has a right adjoint ¥

(the internal universal quantification along f).

Isegp(a) P(f)

Vs = P(A) ppra) Y ppp)y LU p(p).
Proof. V¥ is an internal functor by construction, and
i) P(f)oVy=P(f)olsegpayo PP(f)oP({}5)>
L segpgyo P({ }B) = idp(p) and

ii) Vyo P(f) =| segpa) o PP(f) o P({ }5) o P(f) =
L segpay o P(fo{ }B o P(f)) <l segp(ay o P({ }a) = idp(a).
This proves that P(f) - V. O

Elementary description of V:

VI€|E| VNeP(A) VbeB: b e NoVy iff

VJeE|E| Viel Va€A: aof=iobimpliesa € ioN

P(A)— 1, p(B)
N
IT)B
i ]"
J—A
Proof. b € NoVy iff bo{}p<NoVf iff bo{}poP(f)<N. O

13
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Corollary 2.1. E has a strict initial object &.
Proof. Consider the global section false : 1 — € defined by the following equation:
T falsem ="idq oV,

We claim that false 4!g. Now,

Cfalseq? ="lg o false? =T falsem o P(lg) =

Tido oV, o P(lg) < Midg™
and consequently false —!q.

Consider the following pull back diagram

false

—

Q

Q
Itrue
1

By the uniqueness theorem for adjoint internal functors we have that @ is the smallest

—

subobject of 1, and this implies that & satisfies the uniqueness property of an initial object as

E has equalizers. Accordingly, the next diagram shows that & is an initial object.

r A
17X px)
I{ Fx
F—— =+ — X
Finally, @ is a strict initial object as E is cartesian closed. O

Corollary 2.2. If f € Homg(A4, B) then f is monic iff { }a = fo{ }go P(f) iff Vs o P(f) =
idpcay iff P(f) is epic iff Yy is monic.

Proof. This follows from ii) in the proof of Proposition 2.1. O

Corollary 2.3. The assignment X — P(X), f —— V; defines a functor (covariant and

faithful)
V:E— E

called internal universal quantification.

Proof. This follows from the uniqueness theorem for adjoint internal functors and the fact that

P is a faithful and contravariant functor. O

In order to establish that P(f) has a left adjoint we need the fact that the internal power

objects are internally complete.
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Proposition 2.2. Let X € |E| and let (\y be the internal intersection on P(X) defined as

follows

Tsegpp(x) P(Tsegp(x))

Ny = PP(X) 975 ppp(x) P

PP(X) P(X)

then (x is a contravariant internal functor, (\x LTsegp(x) and furthermore { }p(xyo(\x =

idp(x)-
Proof. (| is a contravariant internal functor by construction, and
i) { }rx)oNyx = wpx) o P(wpx)) = idp(x)
(i.e. the unite law for the double dualization monad on E)
ii) 1T segp(x)ox =Tsegp(x)o Tsegpp(x) o P(Tsegp(x)) o P({ }x) =
Isegpxy o P({ }x) =idp(x)

iii) VI € [E| VN € PP(X) VA€ P(X):

Ae N iff
Ao{}px)<N implies
Nofly < Ao bpx) oMy = A if

A € No[xoTsegp(x)-
Le. idpp(x) < nX © TsegP(X)a whence ﬂx 1 TsegP(X)' =

Elementary description of [ :

VIc|E| VNePP(X) VeeX:z € No(y iff

VJe|E| Viel VAeP(X): A € ioN impliessiox € A.

PP(X)— " prx)

/
J—24 s P(X)

Proof. z € No[y iff zo{ }x < No[y iff N <wo{ }xoTsegpix). O

Proposition 2.3. Let f € Homg(A, B) then the internal functor P(f) has a left adjoint 3;

(the internal existential quantification along f).

Tsegp(a) PP(f) Nz
—

3; = P(A) pPA) — . pp(B)—2 P(B)
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Proof. 3y is an internal functor by construction, and
i) 35 o P(f) =Tsegpa) o PP(f) o oP(f) =
Tsegp(a) o PP(f)o Tsegpp(py © P(wp) o P(f) =
tsegp(a) o PP(f)o tsegpp(py o PPP(f)o P(wa) >
Tsegp(ayo Tsegpp(a) © P(wa) =Tsegp(ay o (4 = idp(a)
i) P(f) 03 = P(f)o segpia) o PP(f) oy <
tsegpp) © g = idp(p)
This proves that 3y 4 P(f) O
Corollary 2.4. E has epi-mono-factorization.

Proof. Let f € Homg(A, B). If i : C' — B is any monomorphism in E then f factors through
i iff f ochp(i) =truea iff "trues < Tchp (i) o P(f) iff Ttrues o3y < Tchp(i)™

Thus if we define the image of f by the equation
Tchp(im(f))" = "truea” o 3y

we have that ¢ = im(f) — B is the smallest subobject of B through which f factors. Also the

factorization
A ! B
i 7
im(f)
the morphism f is epic as E has equalizers.
The above factorization is unique as E is balanced. O

Corollary 2.5. If f € Homg(A, B) then f is epic iff "truea” o 35 = Ttrueg™ iff P(f) o35 =
idp(p) iff P(f) is monic iff 3y is epic.

Corollary 2.6. The assignment X — P(X), f —— 3; defines a functor (covariant and

faithful)
J.E—E

called internal existential quantification, and
{}={{}x: X = P(X)}xep :idg = 3
is a pointwise monic natural transformation.

Proof. As P is a contravariant functor it follows from the uniqueness theorem for adjoint
internal functors that 3 is a well defined functor. If f € Homg(A, B) then
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{Yao3r ={}aotsegp(ayo PP(f)o(Ng =wac PP(f)o(\p =
fowpoNp=fof}potsegpmyoNp=/fo{}a,

which proves that { } is a natural transformation, and as the values of { } are monic we know
that 3 is a faithful functor. O

Proposition 2.4. In E epimorphisms are preserved by pull backs.

Proof. Let f € Homg(A, B) be epic and ¢ € Homg(C, B) be monic and consider the pull back

Now "chp(i)" ="chp(i)To P(f) o3y ="fochp(i)Tod; =
Fcha(j) o3 ="Tcha(im(j)) o3y = "trueplod; 03y =
Ttruep” o Jjor = Tchp(im(jo f))™.

This proves that epimorphisms are preserved by pull backs along monomorphisms.

In order to obtain the proof in the general case we take h € Homg (X, B) and consider the

B

}

X
idx X f

XxA——» X xB

(fJQI IF}L
f

Y —MmMM X

pull back diagram
A—7r
}
f
Y ——M —

as well as the diagram

As f is epic we have that idx x f is epic as E is cartesian closed. And as the second square
is a pull back iff the first one is, and as I'j is mono (split) it follows from the first part of the
proof that f is an epimorphism.

This concludes the proof of Proposition 2.4 O

Elementary description of 3:

If f € Homg(A, B) let us consider the “classical” construction of 3;. For this clause only

let us use the notation I(f). We indicate the construction by the following diagram.
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—

i.e. I(f) classifies the image €; of €4 along idp(4) % f.
The construction of I(f) is possible due to Corollary 2.4, and by Proposition 2.4 we know
that I(f) has the following elementary description:

VN e |E| VKeP(A) VbeB:b e Kol(f) iff
dM € |E| Je€ N (epi) Jac A such that
aof=eob and a € eoK
i) I(f) is an internal functor.
INe|E| K,LeP(A) beB bg Kol(f)and K < L, then
JM € |E| Jee N (epi) Ja € A such that ao f =eob
anda € eoK,but K < L,thuseo K <eoLandsoa € eolL
ii) idpay < I(f) o P(f).
This follows from the defining diagram of I(f).

iii)
P(f)

P(B) P(A) P(B)
K
I~ B
o
J—% A
Let T € |[E| K e P(B) be B and assume that b € K o P(f) o I(f).

Thus 3J € |E| Je € I (epi) Ja € A such that ao f =eob and
a € eoKoP(f),ie.aof € eoK.

But theneob € eo K and so b € K as e is epic.
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iv) Summing up we see that I(f) is an internal functor and that I(f) 4 P(f). It follows from

the uniqueness theorem for adjoint internal functors that I(f) = 3, as we have that both

I(f) 4 P(f) and 3y 4 P(f).

Thus the construction in Proposition 2.3 makes possible the “classical” construction of in-
ternal existential quantification and the two constructions agree. It follows that I(f) and 3y

have the same elementary description.

Recall that in establishing the existence of 3; we had to verify that the internal power ob-
jects were internally complete. This fact leads to a rapid development of the internal structure
of E.

Let C(E) be the category of internally complete ordered objects in E and inf-preserving
morphisms. If A and B are in C(E) and f € Homg(A, B) then f is inf-preserving iff the

following diagram is commutative

3
P(A) —L P(B)
infa infp
f

A—— B

Notice that inf-preserving morphisms are automatically internal functors as
f=Tsegaoinfy o f =fsega o3y oinfp.

Dually, let C(E) be the category of internally co-complete ordered objects in E and sup-

preserving morphisms. Etc.

Proposition 2.5. Internally complete ordered objects are also internally co-complete. Explic-
itly, if A= (A,Tsega,infa) is in C(E) then

3TSGQA

sups = P(A) PP(A)

is an internal functor and supa 1 lsega.

Furthermore, ida = { }4 0 supa.
Proof. sup,4 is an internal functor by construction.
i) ida =Tsegaoinfa =tsegao{ }payo a0 infa =
{140 3tuegu 0Ny infa = { }a 0 supa < Lsega o sups =
Tsegao Tsegp(a) © P(1sega) © Ipsega 0[Ng0 infa <
tsegac tsegpea) o (40 infa = tsega o infa = ida

ie. { }aosups =lsega osups =ida.
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ii) Asinfao lsega = Tsegp(ay o P(1sega) L Ftsegs 04 We have that
supao lsega = Frsegy 040 infao lsega =
Ftsega © (a0 Tsegp(a) o P(Tsega) = idp(a
This concludes the proof of Proposition 2.5 O

Proposition 2.6. A morphism f, : A——— B between two internally complete ordered objects

is inf-preserving iff it is an internal functor having a left adjoint f*. If f. is inf-preserving then

infa

— A

Tsegp

f=B P(B) P(A)
and f* is sup-preserving.

Proof. If f, is inf-preserving then f, is an internal functor. As for f*, as defined above, it is

an internal functor independently of the properties of f..
i) f*o f. =tsegp o P(f.) o infao f. =tsegn o P(f.) 03y, oinfp >
Tsegp oinfp = idp
i) fuof*= fioTsegp o P(fi)oinfs <tsegaocinfs =ida,
as f, is an internal functor, whence f* 4 f,.

Conversely, if f, is an internal functor having a left adjoint g : B——— A, then go 1sega =
Tsegp o P(f.), and as

3y, oinfp Ltsegp o P(fs) and
infpo f. L goTsega
it follows from the uniqueness theorem for internal adjoint functors that
3y, cinfp =infao fi and g = fi.
Finally, if f* 4 f. then |sega o P(f*) = f.o lsegp and as
Ip« o supa 4lsega o P(f*) and
supp o f* 4 fio lsegp

it follows that 3y« o sups = supp o f*.
This concludes the proof of Proposition 2.6 [

Statement. The assignment
(A, tsega,infa) +— (A, lsega,supa)

feitA——B +— f*:B—A,
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defines a contravariant functor
I:C(E) ——C(B).

Corollaries.
Corollary 2.7. The internal power objects are internally co-complete.
Uy : PP(X)—— P(X) is given by
Ux = Ftsegrx) ©Npxy ©Nix -
Corollary 2.8.
{ trox) oUx = idpx).
Corollary 2.9.
As 3y, oUx Wsegpx) o P({ }x) = idp(x), we have that
3{ Yx o UX = idp(X).
Corollary 2.10. As|Jy segp(x), we have that
UP(X) oUx = Ju, © Ux -
Corollary 2.11. Vf € Homg(X,Y) we have 35 4 P(f). It follows that
33, o Uy = Ux o3y
Let A = (3,{ },UJ). In this notation I is a monad on E. 3l is called the internal power
monad on E.
By dualizing the proofs of Proposition 2.5 and Proposition 2.6 we get
Proposition 2.5." Internally co-complete ordered objects are internally complete. Explicitly,
if A= (Isega, supa)is in C(E)then

HisegA

infa = P(A) PP(A)

is a contravariant internal functor and infa L Tsega, furthermore ida = { } 4 oinfa.

Proposition 2.6.* A morphism f* : B——— A between two internally co-complete ordered
objects is sup-preserving iff it is an internal functor having a right adjoint f..If f* is sup-

preserving then

lsega P(f*) supp

fi=A P(B) 2, B

P(A)

and fy is inf-preserving.

Statement. The assignment
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(A7¢569A75UPA) — (A7T869A7ian)
ff:B——A +— fi:A——B,

defines a contravariant functor

J:C(E)——C(E).

By the uniqueness theorem for adjoint internal functors we get that I and J are antiisomor-
phisms of categories and that J = I~1.
If (A, lsega,supa) € |C(E)| then the adjunction sups - |seg4 implies that

U4 05upa = Jsup, © supa and {}aosups =ida.

It follows that the assignment
J(A, lsega, supa) = (A, supa) and J(f*) = f*

defines a covariant functor J from C(E) to EE", the category of algebras for the internal power
monad on E.
Proposition 2.7. If (A,s) € \EE"\ then

{}a P(s) Ua

PP(A)—2 P(A)

seg(s) = A P(A)

defines an internal order on A. Furthermore, s is an internal functor with respect to this

ordering and s 4 |seg(s).

Proof. By assumption we have commutativity of

A P(A) —— A
1) lseg(s)os={}aoP(s)olUsos={}tacP(s)odsos={}aos=ida.
In particular Jseg(s) is monic and 3 4ez¢s) < P(5)
2) solseg(s)=so{}aoP(s)olUs={}pm)oTsoP(s)oU, 2
{ Yry oUa = idpa)
3) {ta={}tae3uolUs <{}aoP(s)olU, =lseg(s),
as 3y, < P(s) follows from { }a 05 = ida.
4) Jsega 0 Jpseq, 0 Uy =Iseg(s) o P(s) o U, <
Iseg(s) o P(s)olUy 0 s o lseg(s) =lseg(s) o P(s) o350 s olseg(s) =

lseg(s) o s o lseg(s) =lseg(s). It follows that
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4.1) Iseg(s) o P(s) < lseg(s)o lsegp(a) and
1.2) Lseg(s) < Jseg(s)o segp(a) o P(Lseg(s).
5) By 1), 3) and 4.2) we have that |seg(s) is an internal ordering on A.
6) If (B, lsegp, supg) € |C(E)| then |segp = { } 5 o P(supg) o Up-
Indeed, {segp =lsegpo{ }pp)yoUp = { }B © Jjsegr ©Up <
{ }B o P(supp) o Up <lsegp o P(supp) o Up =lsegp.

Notice that 3| seq, < P(supp) follows from |segp o supp = idp. The last equality follows from

supp 1segp via Proposition 2.6*. In particular we have

Lsegray = { Ypeay © P(U) © Uy
Finally, as { }a 0 P(s) 0 P(3s) 0 Up(ay© 3s =
{}a0P(s)o P(3) 033, 0Us < { Jao P(s) o, = Lseg(s)

it follows that
Lseg(s)o Lsegp(a) =lseg(s) o { }p(ay  P(U) © Upay =
{140 3pueq9) 0 P(U) o Upay < { a0 P() 0 P(U) 0 Upay =
{340 P(Us0 5)oUpay = {140 PEso )0 Upia) =
{}a 0 P(s) 0 PE.) o Up(a) <lseg(s) o P(s).

7) From 4.1) and 6) we have that Jseg(s) o P(s) = Lseg(s)o Lsegp(a)-

It follows that s is an internal functor and that s is the left adjoint of |seg(s).
This concludes the proof of Proposition 2.7. O

From Proposition 2.7 we get that the assignment

1(A,s) = (A, lseg(s),s) and I(f)=f

defines a covariant functor I from EE" to C(E), and that the composite J o I = idEEII' From
the proof, 6), of the proposition it follows that [ o.J = ide () ;

As a consequence we have for an elementary topos E the theorem which in the case E = Sets
was first established by E. Manes [13].

Theorem 2.1. The category C(E) of internally co-complete ordered objects and sup-preserving
morphisms is tripleable over E and isomorphic to the Eilenberg-Moore category EE" for the
internal power monad on E. Also, it is antiisomorphic to C(E), the category of internally

complete ordered objects and inf-preserving morphisms.
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The standard argument that EE" has finite inverse limits can also be applied to the forgetful
functor
CE)——E

and consequently we have that C(E) has finite inverse limits and finite direct limits as well.

Given a finite diagram D in C(E), pass to C(E) and compute its inverse limit (as in E) and
return to C(E). The result is the direct limit in C(E) of D.

In particular C'(E) has finite bi-products (the cartesian product) and a zero object (1).

Notice that the diagonal as well as the terminal morphism on any object in C(E) are both
inf- and sup-preserving. It follows that any (A,|sega,supa) € |C(E)| is a bounded lattice
object in E. In particular we rediscover the already established fact that the internal power
objects are upper semilattices in E.

Due to Theorem 2.1 the objects C(E), C(E) and EE" will simply be called complete lattices
(in E).

Theorem 2.2. Let A be a complete lattice in E and let f : A — A be an internal endofunctor
on A, then f has a smallest fizpoint (defined over 1).

Proof. Consider the following diagram

pa) M g P g q T g

3 i P.B. true

P(F) F 1

If a: N — A is any element in A then a factors through F' iff a o f < a. In particular
tof<i. Butiof <iiff Tsega o P(io f) <tsega o P(i) iff iy oinfa < J;0infa, and as

infao f<d;o0infa as f is an internal functor, it follows that
Jioinfao f<Jjodfoinfa=Tisfoinfa < Jjoinfa,
and so there exists a uniquely determined morphism
infp: P(F)— F

such that

J;oinfa =infpoi.

It follows that (F,fsegr = io Tsega o P(i),infr) € |C(E)|, and that i is a C(E)-morphism.
In particular

a="Ttruep o3, 0infs ="truepoinfr o

is the smallest global section in F'.

Now ao f < a, and as f is an internal functor ao fo f < ao f. Thus ao f factors through
F and so a < ao f. It follows that ao f = a.

If b: N — A is any fixpoint for f, bo f = b, then bo f < b and so b factors through F.
Again !y o a < b by the minimality of a.

This concludes the proof of Theorem 2.2. O
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Remark. In the category of sets Theorem 2.2 is known as Tarski’s Fixpoint Theorem, [25]. In
the case A = P(X) it was first published by Knaster [11] as the result of joint work of Knaster
and Tarski, but it is easy to trace the theorem through Zermelo to Dedekind [2]. E.g. the
following proposition goes back to Was sind und was sollen die Zahlen. The number 5.41

refers to Aspects of Topoi where the proposition was established by Freyd by another method.

Proposition 5.41. Given z : 1 — X andt : X — X in an elementary topos E then
there exists a subobject
1Y — X

such that im(iot) Ve =Y.

Proof. Apply the fixpoint theorem in the case A = P(X) and f = (3;,!p(xy 0oz o { } x) o Vp(x).
O

Actually, we get a smallest solution of the problem.

The original reason for establishing the fixpoint theorem for elementary topoi was to verify

the following
Proposition 2.8. FElementary topoi have coequalizers.

Proof. First we notice that equivalence relations have coequalizers.

Po
R———=X Teeqr P(X)
P1 m
f l x}) o / ‘Ef
A P(A)

{}a

Let (po,p1) : R———X x X be an equivalence relation in E and let Tsegr be the exponential
adjoint of chxx x(R). As R is an equivalence relation we conclude that VM € |E| Vz,y € X :
x o Tsegr = y o Tsegr iff xRy In particular we have that : pg o Tsegr = p1 o Tsegr.

Let gom =1segg be the epi-mono-factorization of tsegr (which exists in E by Corollary 2.4),
then pg o ¢ = p1 o ¢ and (pg,p1) is the kernel-pair of g.

We claim that ¢ is the coequalizer of py and p;.

Let f € Homg(X, A) be a morphism in E such that ppof = piof. Then tsegro3; = fof }a.
Indeed, { } 4 <Tsegr as R is reflexive, and so fo{ }a ={ }x o3y <Tsegr o 3y.

Now Tsegr o3y < fo{ }a iff Tsegr < fo{ }a o P(f). But the latter inequality is the
assumption on f. It follows that tsegr o3y = fo{ }a.

Q
Itrue
1

PX)—— 2 pa)—

Begr q Q

b
/.,
b
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Now gomodyosy =Tsegrodfoss = fo { }a0sa = truex = qotrueg, it follows
that m o3y os4 = trueg as g is epic. Thus there exists a factorization f: @ — A such that
fo{}a=mo3y, and as { }4 is monic it follows that go f = f. As ¢ is epic we see that

q = eq(po, p1)-
This proves that equivalence relations have coequalizers.

As for the general case let f, g € Homg(Y, X). Now, provided we can construct the smallest
equivalence relation R on X which contains the image of (f,g), it follows from the above and
from the fact any kernel-pair is an equivalence relation that the coequalizer of f and g exists

and equals the coequalizer of R.

X xX
(f,9)

Y —»im((f,9))— R

Consider the following internal functors on P(X x X):
f1 = “Adjoining the image of (f,g)”

= (idp(xxx);'P(xxx) 0 "ch(im({f,9))) ") © Vpxxx)

fo = “Adjoining the diagonal on X”

= (idp(xxx);'P(xxx) 2 "0x ) © Vp(xxx)
f3 = “Taking the inverse of the relation” = 3y,
f1 = “Taking the square of a relation”

= Apxxx)°Ox,xx e

and let g1 = f1, gn1 = (gn, fnt1) © Vpxxx) for n = 1,2,3, then the fixpoints of g4 (over 1)
are exactly the equivalence relations on X containing the image of (f, g), and by the fixpoint
theorem there exists a smallest such fixpoint.

This concludes the proof of Proposition 2.8 O

Y
Using the epi-mono-factorization we have composition of relations in E. This construction

is internalized as follows:

P(A x B) x P(B x C) SR P(A X C)
P(po,l)XP(Pl,z)‘/ Tpo 2
AP(AxBxC)
P(AxBxC)xP(AxBxC(C) P(Ax BxQC)

Observe that from the proof of Proposition 2.8 it follows that epimorphisms are coequalizers

(of their kernel-pairs).
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Proposition 2.9. Elementary topoi have finite coproducts.

Proof. Let X,Y € |E| and let ixy : X + Y>—— P(X) x P(Y) be the smallest subobject of
P(X) x P(Y) containing the two subobjects ({ }x,!x o™ falsey ") and (ly o" falsex ™, { }y)

P(X) x P(Y)

{ }x,!xo" falsey ™) ) (lyo falsex.{ }v)
iX,y

XF;%X+Y%§%Y

If ch(X) and ch(Y') denote the characters of these subobjects then

ChP(X)xP(X)(iX,Y) = <Ch(X), Ch(Y)> o V.

It follows from the defining property of ix y that the two morphisms ex and ey are joint
epi, as E has equalizers.
Let f € Homg(X, Z) and g € Homg(Y, Z) and consider the following diagram.

3¢ x3g Vp(z)

P(X) x P(Y) P(Z) x P(2) P(2)

({ }x,!xo falsey ™) { }z,\z0o" falsez )
{1}z
f

Now " falsez ™ is the smallest global section in P(Z) and therefore the triangle is commuta-
tive. The square is commutative as 3, 4 P(g) and as { } is natural. It follows that the inverse
image of { }z along 3y x 3g o Vp(z) contains ({ }x,!x o falsey ). Dually, it also contains
the subobject (ly o falsex™, { }y), and therefore it contains the smallest subobject with this

property. Le. there exists a morphism

f

()i X+Y——27

such that ix,y o (35 x 3g) 0 Vp(x) = (;j )o{ }z. It follows that

X
f
ex
X+Y—-)»Z
ey
g
Y

is commutative. This means that

X%7;%X+Ye;f4Y

is a coproduct in E as ex and ey are joint epi.

This concludes the proof of Proposition 2.9. O
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Remark.It follows from the above construction that coproducts in an elementary topos are
disjoint.
Theorem 2.3. Elementary topoi have finite colimits.

Proof. This is the content of Corollary 2.1, Proposition 2.8 and Proposition 2.9. O

Remark. Due to Theorem 1.1 and Theorem 2.3 we now know that the definition of an
elementary topos given in this work agrees with the original one [5]. In cases where we want to
establish that a certain category is an elementary topos Theorem 2.3 will reduce the amount
of work required for performing the proof. A typical example is given in [9].

One of the most frequently quoted properties of elementary topoi is that they satisfies the
Beck condition for pull backs. We shall use this property several times in the following internal
form.

Consider the following diagram

3
J < I—Y . pa)—L - P(B)
k c P(g) 2 P(g)
f 3r
o\ K— = C P(K) ———— P(C)
g 1 g

A—T1 B

If go f = fogthen P(f)oP(g) = P(g)o P(f) and therefore P(g) o3 < 30 P(g). In this

notation we have the following
Proposition 2.10. If the diagram 1 is a pull back then the diagram 2 is commutative.

Proof. Let I € E, M € P(A) and ¢ € C such that ¢ € M o 3y o P(g). We claim that
c € Mo P(g)o3;.

By the assum;tion we have that cog € M o3;. Thus 3J € |E|, Je € I (epi), dJa € A
such that « € eo M and eocog =ao f. As 1is a pull back there exists k¥ € Homg(J, K)
such that kog =a and ko f =eoc,and as kog=a € eo M and e is epic, this proves that
c € MoP(g)o3y. O

Remarks.

1). Notice that the above proof did not depend on the uniqueness of k.

2). From P(g) o3y =3y o P(g) we derive P(f) oV, =V, 0 P(f) by uniqueness of adjoints of

internal functors.

3). In any regular category pulling back along an epimorphism reflects monics. In the above
notation this means that if g is epic and f is monic and 1 is a pull back then f is a

monomorphism.
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As elementary topoi are regular categories, it follows that they have this property and the
proof from the regular case applies. We have, however, the following concise proof.
As P(g) o3y = 3y o P(g) and as g is epic and f is monic we have that P(g) and 3y are

monic. Thus 3; is monic, and therefore f is also a monomorphism.

Most categorical properties of elementary topoi reflect themselves internally. For example,
the following proposition is the internal version of the fact that the cartesian product of two

epimorphisms is an epimorphism (cf. Theorem 1.1).

Proposition 2.11. p = {pap : P(A) x P(B) —— P(A X B)}(a,B)c|E|x|E| 5 a natural

transformation with respect to 3.

Proof. ps p was defined in Chapter 1, (8). The statement of the proposition means that all

diagrams of the form

PX.,y

P(X) x P(Y) P(X xY)

Hlfxﬂg[ ﬂfxgll\

P(A) x P(B) —2%_ P(A x B)
are commutative.

We shall give a detailed proof of this fact by means of the elementary descriptions involved,

and it may serve as a prototype of this kind of proof.

P(A) x P(B)

VI € |E| VR € P(A) VS € P(B) Vo e X Yy ey :
<£E,y> S <RaS>O ﬁA,BOEleg iff
3J € |E| Je € I (epi) Ja€ A 3b € B such that

a€eoR beeoS aof=coxzandbog=ecoy.
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P(A) x P(B)

T<R,s>
X2t 7Y sy
A 3 PB. 5 —2 B
Ja

VI € |E| VR € P(A) VS € P(B) VreX WyeY:

(z,y) € (R,S)o Iy x I 0pxy

IJy € |E| Jdeg € I (epi) Jdao € A such that
ag E epoRand ago f =egox

J; € |E| Jde; € I (epi) by € B such that

bp € e;oS and bpog=-ejo0y.

By taking Jo = J1 = J, eg = €1 =€, ag = a and by = b, it follows that

PA,BOTfxg <y X JgoPxy

30

iff

and

We can prove the other inequality as follows. By Proposition 2.4 the two morphisms gy and

¢1 in the indicated pull back are epics. Thus by taking J = Jo, e = gooeg = (g1 0e1), a = gpoag

and b = ¢ o by, it follows that

PAB O dfxg 2 Jp X Jgopxy

This concludes the proof of Proposition 2.11.

Recall the notion of internal bi-functors that admit an exponential.

described in Chapter 1, (9)

Lemma 2.1. Let A, B, C, Ay, By and Cy be internally ordered objects, let

0:Ax B——C
be an internal bi-functor which admit an exponential
—: B? xC— A,

and let g : B — B be an internal functor and

fr n*
_— _
Ap A and C. Co
fs Py

be a pair of adjoint internal functors, f* - f. and h* - h, then

O

(The concept was
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f*xg

A()XBO Ax B

o C h* Co

gxha

BoXCO : BxC

— A f AO

Proof. VN € |E| Ya € A
(ao f*obog)oh* <c

ao f*< bog—coh,

Vb € By Ve e Cy :
iff ao f*obog< coh, iff

iffa<(bog—cohy)o fs

Let
o . X xXY—7

be any (binary) morphism in E, and let

o: P(X) x P(Y)—— P(Z)

be the morphism
@ =px,y ©de = P(po) X P(p1) o Ap(xxy) © Je-
By Lemma 2.1 the induces multiplication e admits an exponential

v = P(p1) x P(e)o =P(XxY) Vpo

By the above construction we have the following elementary description of e and o

P(X)x P(Y)——=—— P(2)

(4,B)
I~z
;e

VI € |E| VA e P(X) VB e P(Y) VzeZ:z € AeB iff

Y o xxy

3J € |E| Je € I (epi) dre X Jy €Y such that

r€eocA, yc€eoBandrey=ceoz.

P(Y) x P(Z) —*— P(X)

31

expo
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VIe|E| VBeP(Y) VYCeP(Z) VeeX:zeB9C iff
vJ € |E| VyeY:y €ioB implies (iox)ey € ioC.

Proposition 2.12. Let A, B and C be complete lattices in E and let @ : A x B— C' be an

internal bi-functor. Then e admits an exponential — iff the following diagram commutes

idp(A)X{ }B .
P(A)x B P(A) x P(B) —=— P(C)
supaXidp supc
Ax B - C

Furthermore, if the square is commutative, then — is given by

L = Bx 0 ppy w P(O)—2 P(A) A A

The proof of Proposition 2.12 is left to the reader. It is - using the elementary description

of e and @ - a direct translation from the classical proof in Sets.

Corollary 2.12. Let A be a complete lattice in E and let @ : A x A——— A be an internal

symmetric bi-functor, then e admits an exponential — iff the following diagram commutes.

P(A) x P(A) & P(A)
Sup A Xsupa sup A
Ax A : A

Observe that in the case @ = A4 then the Corollary 2.12 is the well known criterion for A
to be a complete Heyting algebra (object in E).

In the below theorem let p° = "true™ = { }; : 1 — P(1).
Theorem 2.4. I = ((3,5,9°),{ },U) is a symmetric monoidal monad on E

Proof. We have seen that p is a natural transformation. Notice that all cases of p have a left
adjoint k
(3pg>3py)
kap:P(Ax B)———— P(A) x P(B),
kap 1 pa.p. Applying k we easily get that (3,p,p°) is a monoidal functor.

To say that { } : idg = 3 is a monoidal transformation means that

l——1

p° l{

+1
P(1)
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is commutative and that all cases of
Ax B

{}ax{}s axz
P(A) x P(B) ——— P(A x B)

are commutative, - which clearly is the case.

To say that |J: 303 = 3 is a monoidal transformation means that

" pay— " pP()
S
P(1)

commutes, and that all cases of the following diagram are commutative.

313A,B

PP(A) x PP(B) P(P(A) x P(B)) — =2, PP(A x B)

J(UA xUp ‘/UAXB

P(A) x P(B) P(Ax B)

PA,B

PP (A),P(B)

The triangle is commutative as 374, o |J; = idp(;) and the square s commutative by the
Corollary 2.12 as the internal bi-functor p4 p admits an exponential.

Finally, p is symmetric as the binary internal intersection on internal power objects is

symmetric.
This concludes the proof of Theorem 2.4 O
From the general theory of monoidal functors (and monads), [7], we get that 3 has a

cotensorial strength
Axy : P(XY) — P(Y)*
which is given by its exponential adjoint, namely
idp(xvy X { }x 0 Pyx x 0 Jevyy : P(Y ) x X — P(Y).

Combining this with the fact that the functors ( )X on E are left exact yields the proof of
the following

Proposition 2.13. The functor ( )X preserves complete lattices in E. Eaplicitly, if A is a

complete lattice in E, then AX is a complete lattice under the pointwise ordering, i.e.

(supA)X

P(AX) XA payX AX

is the internal sup on AX. Dually for inf. Furthermore, if f € Homg(X,Y) then Al is sup-

and inf-preserving and preserves all finitary operations existing on A.
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We shall now establish a number of properties of internal functors on Heyting algebras in
E. Most of then have most certainly occurred in articles of mathematics but at least one of
them, explaining why f~! of an open continuous function on topological spaces must preserve

the formation of implication of open sets, seems to be new.
Proposition 2.14 (The Frobenius Reciprocity, [14]). Let

f
_
fg

A, B>
g

be a pair of internal adjoint functors on Heyting algebras in E, then the following statements

are equivalent.
1) f preserves |-segments.
2) (f,g) satisfies the Frobenius Reciprocity Law.
3) g preserves implication.
In case the internal functor g has a right adjoint h, each of these conditions is equivalent to
4) (f,g,h) is a Stone morphism.

Proof. Consider the following diagrams.

3
P(A) S AN P(B)
lsega = Isegp
A 7 B Ax B
idaXg fxid
(1) 2 N
Ax A B x B
L
A\ A
A ! B

— L —
B 7 A Ax B
ida Xg fxid
(3) 2
Ax A Bx B
— 7 —
A h B
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The indicated inequalities are valid and may easily be derived from the general rules of
adjointness of internal functors. The exact meaning of condition n) is that the diagram (n)

commutes.

1)=2).Let I € |[E|,a€ Aand b € B, then (aAbog)of <aofAb<aof. From the last

inequality we have that
aofAbE ao folsegp =ao lsega oy,

and therefore 3.J € |E| Je € I(epi) 3z € A such that z < eoaand zo f=coao fAeob.
Aszof<eobwehavex <eobogandsoxzof=(ecoaAz)of<(ecaheobog)of<
eoao fAeob=xof, it follows that we have (ecaAeobog)of=eocao fAeobd, and as e is

epic we finally get that (a Abog)o f=ao f Ab.

2) = 1).Let I € |[E|, a € A and b € B such that b € ao fo |segp, i.e. such that b <ao f.
By 2) we get that b=ao fAb= (aAbog)o f and therefore b € ao |segaoIsasaAbog < a.

2 < 3) <= 4) is a corollary of Lemma 2.1. O

Corollary 2.13. Let (A, B, f,g) be as in Proposition 2.14. If f is monic and g preserves

implication, then f preserves binary intersection.

Proof. As f is monic we have that id4 = f o g, and the statement follows from sticking id x f

on top of the commutative pentagon (2). O

Proposition 2.15. Let (A, B, f, g) be as in Proposition 2.14, then f is epic iff go f = idp iff
f preserves T-segments, i.e. fo Tsegp =1Tsega o Iy. In case g preserves implication we have

that f is epic iff [ preserves the greatest global section.

Proof. f is epic iff go f = idp follows from f = fogo f. If go f = idp then fo Tsegp =
tsega o P(g) =Tsega o P(g) 03403 <Tsega oIy < fo Tsegp, i.e. fotsegp =Tsega o Iy.
Conversely, assume that f preserves f-segments. If I € |[E| and b € B then asbogo f < b
there is J € |E| and Je € I (e is epic) Ja € A such that eob=ao f <eobogo f<eob. It
follows that eob=ecobogo f and as e is epic we see that b=bogo f,i.e. go f =1idg.
The last statement follows from Proposition 2.14, 2) and the fact that g preserves the
greatest global section as f — g. O

Proposition 2.16. Let (A, B, f,g) be as in Proposition 2.1/, then f preserves binary inter-

section iff
ind/A X Bi\dﬂg
BxB Ax A
- -
A J B

commutes.
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Proof. Apply Lemma 2.1. O

Corollary 2.14. Let (A, B, f,g) be as in Proposition 2.1/4. If f is left exact then g preserves

implication iff g is monic.

Proof. If idg = g o f then g must preserve implication as proved by sticking g x idg on top of
the commutative pentagon in Proposition 2.16.
Conversely, f preserves and g reflects the greatest global section, whence if g preserves

implication it follows that g reflects the order relation and therefore g is monic.
O

Let (H,A,e,—) be a Heyting algebra in E and let o, = chy(e) : H— ), then we
readily see that a, is left exact.
If * is a left adjoint of . then o preserves the greatest global section, i.e. trueoa* =e,

and as 1 segy =— o a, it follows that
VIE|E| VneQ VeeH:(noa™ > zx)oa,=n=z0a,,

as this condition is equivalent with o* 4 a,, but according to Proposition 2.16 this means that
o™ preserves binary intersection.
If H is a complete Heyting algebra then as o =]segpy o P(e) it follows that in this case o*

exists and equals 3. o supy.

Let us shortly investigate some of the consequences of the last group of propositions on the
morphisms on the internal power objects in E.
If f € Homg(X,Y') then by Proposition 2.14, 1) we have that

s) 3ro lsegp(y) =lsegp(x) © 33,

If f is monic then 3y is also monic, and therefore if we evaluate s) on "truex " we find that

st) Tchy (f) 7o Isegp(y) = "chpy)(3f)”

which states that |seg is a “strength” for 3.

In the same way Proposition 2.14, 2) and Proposition 2.14, 3) contain well known informa-
tion. From Proposition 2.14, 4) we see that “universal quantification along f preserves false
iff the image of f is double negation dense in Y.

If F': P(A) — P(B) is sup-preserving, i.e. |J, o' = 3 oJp, then as F' =3, ,or o Up,
it follows that F = P(a) o 3, where (a,b) : R — A x B is the relation from A to B which is
determined by tsegr = { }ao F.

sl) Ttrues " o F' = "Ttruea " o P(a) o 3y = "trueg o 3, = "chp(im(b))™.
It follows that "trues ' o F = "trueg ' iff b is epic.

s2) If b is monic then 3, is monic and by Corollary 2.13 3, preserves binary intersection. It

follows that F' preserves binary intersection.
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Conversely, assume that F preserves binary intersection, and let z,y € Homg(I, R) be two
elements of R such that xob=1yob.
Now zob € zoao{}paoF and yob € yoao{ }40oF , whence

3Je€eE 3Jeel (epi) 3z€R

such that z € eoxoao{ }aoP(a)and 2 € eoyoao{ } a0 P(a). It follows that eozoa =
zoa=eoyoa. Thus zoa =yoa as e is epic, and therefore = y as (a,b) is monic. It follows

that b is a monomorphism, i.e. F' preserves binary intersection iff b is a monomorphism.

83) In case F =3, : P(A) — P(B) we see that ¢ is a monomorphism iff 3, preserves binary

intersection.

s4) The morphisms of the form P(f) : P(A) — P(B) are exactly the lrc-morphisms (i.e.

left exact and right continuous).

Indeed, if F = P(a) o 3 is Irc then b is an isomorphism, by sl1) and s2), and therefore
F=P(a)oP(b_1)=P(b~loa).

In particular if F' is both sup- and inf-preserving then there exists a uniquely determined
f € Homg(B, A) such that F' = P(f).

s5) If F: P(A) — P(B) is an order-preserving isomorphism then F' = 3, where g: A — B

is an isomorphism.

The proof of the tripleability theorem which we are now going to establish does not differ
essential from that which was discovered independently by R. Paré, [22]. Indeed, the fact
that P reflects all coequalizers can be replaced by the fact that P is faithful. Thus if we are
primarily interested in the finite colimits we only need to construct 3; for f monic, to verify
that 35 o P(f) = id for f monic and to establish the internal Beck condition for pull back
diagrams with two opposite faces monic. The existence of finite colimits now follows from the
fact that the Eilenberg-Moore category for a monad has the same type of inverse limits as the
base category.

The reason that we have not adopted this approach is that we wanted more than the mere
existence, namely the elementary description which does not follow directly from the indicated
method.

Theorem 2.5. Let E be an elementary topos then the functor
1) P:E? —E
18 tripleable.

Proof. The contravariant functor P : E — E is adjoint to itself on the right, i.e. the covariant
functor P : E°? — E has a left adjoint. E? has all finite colimits as E has all finite limits.

The functor P : E°’? — E reflects coequalizers. Indeed, let
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VAN

2) A—"——B . C
g

be a diagram in E and assume that

P(C) —_ P(B)— P(4)

is a coequalizer diagram in E.

As P is faithful we see that i o f =i o0 g, and as P(¢) is epic we know that 4 is monic. Let
h € Homg(X, B) and assume that ho f = hog. Then P(f)o P(h) = P(g)o P(h) and therefore
there exists ¢ € Homg(P(A), P(X)) such that P(i) o g = P(h). As P(i) is epi (split) it follows
that ¢ is an internal functor which is sup- and inf-preserving. It follows from s4) that there
exists m € Homg(X, A) such that ¢ = P(m). Again, as P is faithful, we see that h = m o
proving that 2) is an equalizer diagram.

The functor P : E°? — E preserves coequalizers of P-contractible pairs. Indeed let

VAN

3) A—"t B . C
g

be an equalizer such that P(f) and P(g) have a contractible coequalizer in E; i.e.

P(f)
— q
P(C) —pP9)— P(B Q
( ) Sg ( )%

such that P(f)oq = P(g)ogq,toq=1idg, soP(g) =idpg) and so P(f) = qot. We claim
that P(i) = coeq(P(f), P(g)).

Consider the diagram

where the inner square is a pull back and m is the proof of i o f =4 o g. Notice that g and x
are monic as P(g) is epi (split by s).

We claim that aog = ao f. Indeed P(ao f) = P(f)o P(a) = P(f)oso P(g)o P(a) =
P(f)osoP(f)oP(x)=P(f)ogqotoP(x)=P(g)ogotoP(x) =P(g)osoP(f)oPz)=
P(g)osoP(g)oP(a)=P(g)oP(a) =P(aog),and so ao f =aog as P is faithful.

Let h € Homg(D, A) be the proof of ao f = ao g, i.e. h is uniquely determined by the
equation h oi = a. Notice that mohoi=moa =1i. It follows that mo h = id4.

We claim that

P(f) ()

—
P(C) —P)» P(B) | P(A)
3, P(h)o3,



CHAPTER 2. INTERNAL COMPLETENESS IN ELEMENTARY TOPOI 39

is a contractible coequalizer diagram in E.
i) P(f)oP(i)=P(g)oP(i)asio f=1iog.
ii) P(h)o3,0P(i)=P(h)o3oP(mox)=P(h)o3,oP(x)oP(m)=
P(h)o P(m) = P(moh)= P(ids) = idp(4) as x is monic and mo h =id4.
iii) 34 0 P(g) = idp(p) as g is monic.
iv) 3,0 P(f) = P(a) o3, = P(hoi)o3, = P(i) o P(h) o 3,, where the first equality is a
consequence of the internal Beck condition applied to the diagram 4).

This concludes the proof of Theorem 2.5. O

One of the important operations in elementary topoi which is not directly comprised in
the calculus of 3, P and V is the unique existentiation. This concept was introduced in
elementary topoi by P. Freyd in Aspects of Topoi. It is used whenever for a given f €
Homg (A, B) we need to describe the subobject of the domain A of f to which the restriction of
f defines an isomorphism onto the corresponding image. We shall use the unique existentiation
in its internal form

f:A— B into 3y : P(A) — P(B)

as well as its internal strength:
Ay p: B — P(B)FW

Consider the following pull back diagram:

P(X) =
M { }
X

Q
x Itrue
1

1 _—

What does it mean to say that M is a singleton?, i.e. that M o sx = truej.

We have the following three equivalent elementary descriptions:
1) 3a: I — X such that M = ao{ }x.
2) Ja: I — X such that acM and VJ € |E| Vi € I Vx € X : z€io M implies z =i o a.

3) 3J € |E| Je € I (epi) Ja € X such that a € eo M and VK € |E| Vi € I Vx,y € X:
x € 10 M and y€i o M implies x = y.

Clearly 1. & 2. = 3. If 3. is valid we may prove 2. as follows:

Ppo
) Q— A
P1
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Let pg, p1 be the kernel-pair of e.Let i = pgoe (= pioe), and as ppoacioM and p;oacioM we
have that ppoa = p1oa. As e = coeq(po, p1) there exists ¢ € Homg(Z, X) uniquely determined
by eca = a.

This proves the validity of 2.

Let T : P(X) — PP(X) be the exponential adjoint of Ap(x)osx. If f € Homg(X,Y)
we define 3!y : P(X)— P(Y) by the equation

PP(f) P({ }y)

3, = P(X)—2 PP(X) PP(Y) P(Y)

3!y is called the internal unique existentiation along f, and it has the following elementary
description:

P(X) ——— P(Y)

M
I#)Y

VIe|E| VM eP(X) VyeY :ye Modlyiff yo{ }y oP(f) € M oTx iff there exists
exactly one z € Homg (I, X) such that xo f =y and x € M.

The strength of the unique existentiation is given by its exponential adjoint
Mxy = { hyx Xidp(x) 0 Pyx.x 0 Fevyy : YX x P(X)— P(Y)

and has the following elementary description:

xy

YX x P(X) ———— P(Y)
(9,4)

ITH/

VI€|E| VgeYX VAeP(X) VyeY :ye (g Ao EII'? iff there exists exactly one
x € Homg(I, X) such that (g,z) cevxy = v.

An explanation of the tripleability of P : E°? — E can be found in the work of M. Stone,
[24], on the characterization of the lattice theoretic structure of power sets. Stone explains
it (in the category of sets) to be that of a complete atomic Boolean algebra. This theorem
has a topos theoretic version which has its own intrinsic beauty, but which furthermore has
interesting applications.

Let S(E) be the Stone category of the elementary topos E. The objects of S(E) are the
complete Heyting algebras in E, and Homgg)(H, K) is the set of Stone morphisms from H to
K. Recall that f € Homgg)(H, K) iff f = f. in the system

!
.

H+——r—K

I
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where f! - f* - f. and f* preserves implication.
We have seen that the assignment X into P(X) and f € Hompg(X,Y) into S(f) =
(35, P(f),¥y) € Homgg) (P(X), P(Y)) defines a functor

S:E— SE).
We claim that this functor has a right adjoint
T:SE)—E,

the existence and nature we shall now proceed to describe.

In the category of sets T'(H) can be described as the set of atoms in H, where an atom in
H is an element ¢ € H such that 0 # a and for all b € H we have that b < a implies b = 0.
Alternatively, this property may be described by stating that the map

g:{be Hb< a} — 2

which is defined by ({1})¢~! = {a} is an order preserving bijection.
Guided by this observation we introduce the concept of an atom a : N — H in a complete

Heyting algebra H in E as follows:

a is an atom in H iff
VM € |E| Vie N VYneQ 'be H such that
b<ioa and (ioa,byody=n iff

aoatyg = truey  where

({ Yu.,segm) ANy g

aty = H—"29 0 ppy « POH) PQ) 2

Lemma 2.2. Stone morphisms preserve atoms.
Proof. Let f € Homgg)(H, K) and consider the following diagram

N—°* g .k

M
We shall verify that VM € |E| Vi € N Vz € K such that x <ioao fl 3y € H such

that y o f! = z and furthermore (i o a,y) o 6y = (ioao fl,z) o 0k.
Ifz<ioaof! thenx:ioaof!/\x(z:)(ioa/\xof*)of!

and
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(icao fl x)o ik 5 (icao fl = x)o o (ica = xof*)ofioa, = (ica — xof*)of, =

(ioa%(ioa/\xof*))oﬁ*(:l)<ioa,ioa/\xof*>o§H

(1) as the order T Segy =— oa, on a Heyting algebra (page 36) is antisymmetric, (2) by
Proposition 2.14 2), and (4) and by Proposition 2.14 4) and so if we let y = ioa Az o f* we
have y <ioa and yo fl = .

To prove the uniqueness of y consider the order preserving functions

R
_
Homg(M, H) , Homg (M, K)
L

given by (y)R= (ioa — y)o fx and (x)L =ioaAxo f* then L 4 Rand so RoLoR = R.
Thus, if y € Homg (M, H) then (ioa — ((ioa — y)o fuo f*Aioa))o f, = (ica —y)o f, and
so if y < ioa we know that (ioa,(ioa —y)o fiof*Nioa)ody = (ioa,y)ody. It follows
that (ioa —y)o fuo f* ANioa =y asioa is an atom.

Let y,z € H such that y,z <ioathenioaAzo flof* <y& zoflof*<ioa—ys
zofl<(toca—y)ofissz<(ioca—y)ofioff o 2<(ioca—y)ofiof*Nicas z2<y.
It follows that ioa A zo flo f* = 2.

Let y,z € H such that y,z < ioa and assume that yo fl = z o f! then z = y.

Indeed z =iocaAzo flof*=ioaAyo flof*=y.

Finally, let M € |[E|, i € N and n €  and let yo € H be the unique solution to y, < ioa
and (ioa,yp) o dy = n.

Let xo = ypoo fl. Asxzg =ypo f! <ioao fl we know Jly € H such that y < i0a and
yo fl =z and for this y we know that (ioca,y)o dg = (icao fl,xp) o k.

As yo,y < ioa and yo f! = xy = yoo f! we have that yo = y proving that (ioao f!, xg)odx =
(ioa,y)odyg = (ioa,yp) o dy = n.

As for the uniqueness, assume that 1 < ioao fl and (ioao fl,x1)0dx =n. Let y1 < ioa
be the unique solution to y; o f! = 1. As y; satisfies (ioa,y1)ody = (ioao fliz1)odx =n
we see that y1 = yg as a is an atom, whence x; = y; o f! = yg o f! = xg.

This proves that a o f! is an atom. O

Let H € |S(E)| and let iy : T(H) — H be the extension of the atoms in H, i.e. the
subobject of H defined by the following pull back diagram:

H—"" 0
iH true
T{H) —1

By Lemma 2.2 we see that there exists for any f € Homgg)(H, K) a morphism T'(f) :
T(H) — T(K) uniquely determined by the condition

igo fl=T(f)oik
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Consequently, the assignment
H into T(H) and f € Homgg)(H, K) into T'(f) € Homg(T(H),T(K))

defines a functor

T:SE)—E.
Let X € |E| and H € |S(E)| and
g!
P(X) H gl g*
=
a pair of internal adjoint functors. By Theorem 2.1 we know that if h = { }x o g! then

g! = 3p o supy and g* =lsegy o P(h).

Observe that as g* preserves binary intersection ¢g* preserves implication iff
VIe|E| Va,be H VzeX:zo{}xAaog*"<bog*impliesszohAa<b.

As ¢g* is an internal functor on complete lattices then g* has a right adjoint iff ¢* is sup-
preserving iff VI € [E| VA € P(H) Vz € X :zoh < Ao supy implies 3J € |[E| Jee [
(epi) Ja € H such that a € eo Aand eoxzoh < a.

Lemma 2.3. The internal functor g* =|segy o P(h) from H to P(X) preserves implication
and has a right adjoint iff the morphism h € Homg(X, H) is an atom in H.

Proof. Assume that g = (¢!, 9%, 9+) € Homgg)(P(X),H) and let N € |[E|, n € X, a,b € H
such that a <noh,b<nohand (noh,a)ody = (noh,b)ody.

IfMel|E|,ie Nandm € X andm € io(no{ }xAaog*),i.e. if m =ion and moh < ioa
thenionoh =1do0a,thenionoh=14iobandsom € iobog*. As g* preserves implication we
have that a =noh Aa <b. Dually b < a, ie a=b.

This shows that h satisfies the uniqueness property of atoms.

Next, consider the following diagram

g! .
x— U px) v HE——0

I—>——0Q
where I € |E|, i € X and n € Q.

AsiohAnoa* <iohandas (iohjiohAnoa*)ody=(ioh— (iohAnoa*))oa, =
(ioh—=noa*)oa,=(io{}xogl 2noa*)oa,=(io{ }x =px)noa*og)og.oa, =
(io{}x =px)ynolAx)oV¥x =io{ }x odx =px) n = true; =p(x) n = n by repeated
applications of Proposition 2.14, we see that h is an atom in H.

Conversely, assume that h € Homg (X, H) is an atom in H. We claim that ¢g* preserves

implication.
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Let I € |[E|, a,b € H and z € X such that xo{ }x Aaog* <bog*. AszohAaAb<
xohAa< xoh we have that (zoh,xohAa)ody > (xoh,xohANaAb)ody. Let J € |E|
and ¢ € I such that ioxoh =ioxohAioa, theniox €io(xo{ }x ANaog*) and so
tox €iobog* ie ioxoh <iob. It follows that iczoh =di0z0hAioaAiob and so
(xoh,xohANa)ody =(xoh,xohNaAb)ody. Asaoh is an atom in H we conclude that
rzohAa=2x0hAaAband therefore x o h Aa < b.

This proves that g* preserves implication.

Finally, to see that g* has a right adjoint let I € |E|, A € P(H) and = € X such that
roh < Aosupy.

Let n € Homg(I, Q) be the following character:

n=(xoho{}y,A) opyuoI(Soa,) 0 supq.

We claim that n = true;.

As zoh is an atom there exists z € Homg(, H) such that z <zoh and (xoh — z) o a, =
(zoh,z)ody = n. It follows that (zoho{ } g, A)opuu < (xoh — z) oy olsegg o P(— o).

If Je|E|,i €I and a € H such that a € 10 A then (iozxoh — (ioxohAa))oa, =
(ioxoh—a)oa, < (ioxoh — ioz)oa,, and so toxoh Aa < io0z as the map
(ioxoh— ( ))oa, is injective on the |-segments of i o z o h in Homg(J, H) and as this
map preserves binary intersection. It follows that (zxoho{ }u, A) o pu.g < zo lsegy o P(A)
and therefore z > (A,zoho{ }y)opy m o3 osupy = (A, xoh)o (supy X idg)oA=xzoh,
i.e z = x o h or equivalently n = true;.

Recalling the construction of n we see that IN € |E|, Je € I (epi), Ja € H such that
(eoxoh —a)oa, =truey i.e. ecxoh < a.

This concludes the proof of Lemma 2.3. O
Lemma 2.4. Compatible atoms are equal.

Proof. Let H € |S(E)| and a,b € Homg (N, H) be two atoms in H such that a < b.
VIe€|E| Yye H 3!z e H such that (iob,y)ody = (ioa,z)o0dy and x < ioa.
Now (ioca, z)odg = (ica — z)oay = (iob — ((ica — x)Aiob))oay, = (iob,(ioa — x) ANiob)ody,
whence (iob,y)odg = (iob,(ioa— x) Aiob)ody.
Taking I = N, i = idy and y = a we get that (b,a) o dy = (b,(a — x) Ab) o dy and as
a < band (a — x) Ab < b, we conclude that a = (a — ) A b as b is an atom. But a < a — =
ifa<ziffa— x=en, whence a = ey ANb=0.

This concludes the proof of Lemma 2.4. O
Corollary 2.15. If H € [S(E)| then igo |segy o Pig) = { }r(x)-
Proposition 2.17. E is a coreflective subcategory of the Stone category S(E).

Proof. Let H € |S(E)|. By Lemma 2.3 we have a Stone morphism f = (f!, f*, f«) : PT(H) —
H determined by { }rs) o f! = in.

By Lemma 2.4 we have that { }pgy o flo f* = { }rm) o Jiy o supgo lsegy o Pin) =
i olsegr o Pig) = { }rcm). It follows that flo f* = idppyy as f* is sup-preserving.
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If g € Homgg)(P(X), H) then there exists, by Lemma 2.3, a unique h € Homg (X, T'(H))
such that hoiyg = { }x o gl. It follows that S(h)o f = g.
This proves that S 4 T. O

From the characterization of the internal substitution functors it follows that the front ad-
junction for S 4T is a natural isomorphism, i.e. the atoms of an internal power object are the

singletons. This can also be seen by applying Lemma 2.3, Lemma 2.4 and Proposition 1.3.

We shall say that an object H € |S(E)| is atomic iff the sup of the atoms in H is the

greatest global section e in H.

It is now a formal consequence of Proposition 2.17 and Proposition 2.15 that the objects in
S(E) for which the end adjunction f : PT(H) — H is an isomorphism are exactly those for

which truepgy o f! = e. This means that we have

Theorem 2.6 (Stone). The objects of the form P(X) are the complete atomic Heyting algebras
in E.



Chapter 3

Functors on Elementary Topoi

In this chapter we shall study some of the intrinsic properties of the functors used in comparing
elementary topoi. The type of the results and the method of proof requires a systematic notation
which we shall presently develop.
Let
F:E—E,

be a functor on elementary topoi and assume that F preserves all binary cartesian products

and the terminal object. The functor F' comes equipped with
1) a natural isomorphism

F ={Fap:F(A) x F(B)—————F(A x B)}(a,5)c[E|x|E|

2) a natural transformation

F={Fap: F(BY) ————FB)" "} pemix g
3) a canonical isomorphism
FO:1lp——— F(1),

making the system (F, F, F, FY) into a cartesian closed functor. Finally we shall be using

the character
4) d = chp)(F(true)) : F(2) ———— Q.

Definition 3.1. A Functor F': E———E of elementary topoi is said to be logical iff

1) F is left exact.
2) F preserves exponentiation (i.e. I is a natural isomorphism,).
3) F preserves the subobject classifier (i.e. d is an isomorphism).

Logical functors are very important. Indeed, as they preserve all the axioms characterizing
an elementary topos, it follows that all constructions in elementary topoi based on these axioms

will be preserved by logical functors. In particular, logical functors are right exact.

46
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Let

L
e
LR

E, = Ey
R

be a pair of adjoint functors on elementary topoi.We shall deal with this adjunction in terms

of the two natural transformations:

1. the front adjunction

t={ta: A— RL(A)} acip|

2. the end adjunction

v={vx : LR(X) — X} x¢g,|

The functor R is left exact and therefore it has the structure (R, R, I%, RY) described above.
The character chr(q,)(R(trueg)) will be denoted s. Without further assumptions on L we only
have the character chrq)(L(true)) which will be denoted d. Observe that L preserves binary

cartesian products iff

Ri(ay,x R(X)t4

{R(X"Y) R(X)REA) R(X)*}(a.x)elEIx|E,|
is a natural isomorphism.

Definition 3.2. A geometric functor from E, to E is a pair of adjoint functors

L
—>
LAR

E._____ E
R
on elementary topoi, where the left adjoint is left exact.

In accordance with the terminology from sheaf theory:

the left adjoint L is called the inverse image functor and

the right adjoint R is called the direct image functor.

Notice that the direction of a geometric functor is that of the right adjoint R.

Definition 3.3. An essential functor from E, to E is a geometric functor from E, to E where

the inverse image functor has a left adjoint

T
E L E, T-HLAR

R

We shall deal with the adjunction 7' - L in terms of the two natural transformations:

1. the front adjunction

n={nx: X—LT(X)}xeEg,|
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2. the end adjunction
e={ea:TL(A) —)A}AE@
In the case of essential functors we shall use the natural transformation

3.0 ={0xa: AT — R(L(A)™)}(a.x)c|B|x B, |

0 is the conjugate of the natural transformation L and 0 and L are defined in terms of each

other by the following diagrams:

L(AT0) M LR a)X)

‘i’T(X),A ‘UL(A)X

L(A)LT(X) ﬂ) L(A)X

and

BA "% p(BA
B°A lR(ﬁA,B)
BTEA "5 b))
Notice that 6 is pointwise monic (iso) iff L is pointwise monic (iso).

Definition 3.4. A local homeomorphism from E, to E is an essential functor from Eq to E

where the inverse image functor is logical.

T
E L E, THALAR
R
and L 1s logical.
Let
L
_
E E, LAR
Be————&

be a pair of adjoint functors on elementary topoi such that the left adjoint L preserves bi-
nary cartesian products and the terminal object. Under these assumptions we know that the
morphism

R(d)

d=0—""3 RL(Q) —~ R(Q)

is a left exact morphism of bounded lattices in E.

Indeed, R preserves all such structures as R is left exact, and as the lower semilattice struc-
ture of the subobject classifier is equationally equivalent with that of a commutative monoid
whose multiplication is idempotent, it follows that L must preserve not only this structure, but

also the subobject of 2 x 2 defining the associated order relation. It follows that ¢ is left exact
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as t is a natural transformation. Finally d is left exact as L(true) is the greatest global section
in the induced ordering on L(2) and d = chp(q)(L(true)).

Our first theorem in this chapter is due to W. Mitchell [19]. It is included here, not because
the above observations yield the refinement that d and d are always left exact, but because we
want to stress the essential feature (namely d s) of this theorem. Indeed, this adjunction is

important for any closer analysis of geometric functors on elementary topoi.

Theorem 3.1. Let

L
—>
LR

E, = Ey
R

be a pair of adjoint functors on elementary topoi and assume that the left adjoint L preserves

binary cartesian products and the terminal object. Then the following statements are equivalent:
1) L is left exact.
2) L preserves the pull back diagram defining s.
3) d s.

Proof.

1) = 2) This is obviously the case.

2) = 3) We know that both d and s are internal functors, and as true o d o s = true we have
that idg < dos. By 2) we know that L(s) od = chr(y) (LR(trueg)), and therefore we see
that L(s) o d < vq, by the naturality of v. It follows that

sod = tr(a,) o R(L(s) o d) < tr(a,) © R(va,) = idrqy)-

This proves that ds.

3) = 1) Let ¢ : A— B be a monomorphism in E such that L(¢) is monic. As ¢ is natural we
have that

chp(i) < tpo R(chypy(L(i)))os,
and as d 4 s we deduce that

tp o R(L(chp(i)) od) = chp(i) od < tp o R(chppy(L(i))),
ie.

L(chp(i)) od < chy(py(L(i)).

As L is a functor we have that

chrpy(L(i)) < L(chp(i)) od

ie.
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In particular if i = A4q : A— A X A we get that

(SL(A) = -EA,A OL((SA) Od

Recall that a morphism i : A—— B is monic iff i x iodg = d 4. It follows, therefore, from the
below calculation that L preserves monomorphisms. Indeed, if i : A— B is a monomorphism

in E, then
L(i) x L(i) 0 61 (py = L(i) x L(i) o Lp,p o L(dp) o d =
LaaoL(ixi)oL(6p)od=LasoL(ixiodg)od=
LaaoL(d4)od=10pa).
Finally, if f, g € Homg(B, C) then
chrs) (eq(L(f), L(9))) = (L(f), L(9)) © dr(c) =
(L(f), L(9)) o Le,c o L(bc) o d = L({f,g9)) o L(d¢c) o d =
L({f,9) 0 6c) o d = L(chp(eq(f,9))) o d.
This proves that L preserves equalizers and concludes the proof of Theorem 3.1. O

Corollary 3.1. Let

L
_
LR

E, K,
R

be a geometric functor from E, to E, then the following statements are equivalent:

1) s is epic.

2) d is monic.

3) tq is monic.

4) t is a pointwise monic natural transformation.

5) L is a faithful functor.

6) j=dos=idg.
Proof. Clearly 5) <= 4) = 3), and as d 4 s we have that
1) < 2) < 6)=3).

3) = 6): Consider the diagram

02 R —"?Y L RQ) —2—0Q

true RL(true) s R(trueg) * * * true

1 —> RL(1) ——— R(1ly) ——— 1
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x* and * x x are pull back diagrams and * is a commutative square by the naturality of ¢. If

tq is monic then x is a pull back, and therefore j = dos—= to o R(d) o s = idg.

3) = 4): Counsider the following diagram

R(La.q) Rp(ay, Lo

RL(A)HU, oAy R(L(02)54) RIL(Q)RL(A)
ta (1) }m (i1) RL(Q)"A‘
A
A1 ga fo RL(Q)A

(i) is commutative as ¢ is a natural transformation, (ii) is commutative as ¢ is a closed
natural transformation, and as ( )* preserves monomorphisms we have that to“ is monic if tq
is monic and consequently ¢4 is also a monomorphism.

This concludes the proof of Corollary 3.1. O

Corollary 3.2. Let

L
—>
LR

E,  'E,
R
be a geometric functor from E, to E, then the following statements are equivalent:

1) s is monic.
2) d is monic.
3) L(s)od =vq,.
4) vq, is a monomorphism.
5) v is a pointwise monic natural transformation.

Proof. As sod = tr(a,) © R(L(s) o d) and as d 4 s we have that 1) <= 2) <= 3). Clearly
5) = 4), and if vg, is monic then the following diagram which is commutative by the naturality

of v

WQO

LR(Q()) e — ” Q0
LR(trueg) trueg

LR(lo) o > 1p

~

is a pull back as it is commutative, and therefore we have
va, = chrr(ay) (LR(trueg)) = L(s) o d.

This proves that 4) = 3).
Finally, assume that L(s) o d = vg, and let X € |E,|, then

drrx) = Lrx),rx) o L(0rx)) od =
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Lp(xy,r(x) © L(Rx,x) o LR(dx) o L(s) o d =
L), rex) © L(Rx,x) 0 LR(3x) 0 va, =
iR(X),R(X) © L(RX,X) Ouxxx 00x = Ux X Ux 0dx.
This proves that v, is a monomorphism and concludes the proof of Corollary 3.2. O

Lemma 3.1. Let

L
—>
LAR

E, = E
R
be a geometric functor from E, to E,and let X € E,. Then the internal functor
Rx.q, : R(Q™) —— R(Qo) )
has a left and a right adjoint, Rx - EX’QO 4 Ry. Ezxplicitly,
Ry = tR(ay)re) © R(ER(X),R(QU) 0 vg, "X 03, )
RX = tR(QO)R(X) o R(ER(X)7R(QO) o UQOLR(X) oVoyy)

The proof of Lemma 3.1 is a routine exercise which we leave to the reader.

Theorem 3.2. Let

L
—>
LAR

E, = Ey
R

be a geometric functor from Eq to E, then the direct image functor R preserves completeness

of internally ordered objects.
Proof. Let (H, Tsegr,infu) € |C(Ey)|, then (R(H), segri) where

R(Tsegm)

R , SR(H)
Tsegr() = R(H) R(Qp™) 120, p(q) B <", qrem)

is an internally ordered object in E as R is left exact.
By Theorem 3.1 we have that d - s and so dR(H) - gR(H)
By Lemma 3.1 we know that Ry - R\H@O.

Finally, as infy LTsegy, we get that R(infy) L R(1segn) as R is left exact. It follows
that
d" o Ry o R(infr) L R(tsegm) o Rirq, o s =1segr(m),

ie. (R(H),tsegr(m),infrm) € |C(E)|, where
infriy = A" o Ry o R(infy) = tpRr(H) © R(ZR(H),Q o dERH) o3, oinfy)
By virtually the same argument we get that

SUPR(H) = A" o Ry o R(supy) = tpR() © R(ER(H),Q o d B 03, o supp)
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Corollary 3.3. The direct image functor of a geometric functor preserves complete Heyting

algebra objects.

Proof. The preservation of completeness follows from Theorem 3.2, and as the functor in ques-

tion is left exact it preserves all finitary operations, in particular it preserves implication. [

Remark. If F : E————E, is a left exact functor on elementary topoi, then (F'(£2), Tsegr(q))

is a Heyting algebra object in Eg, and = pq)= an o F(=).

The statement that F' preserves implication is of another nature. It means that the character

d = chpq)(F(true)) preserves implication, i.e. on the level of subobjects this means that if
A,B € P,(C) then F(A= B) = F(A) = F(B) in P.(C) is generally valid.

Theorem 3.3. Let F': E—— E, be a left exact functor on elementary topoi, then

1) F preserves implication iff d = chpq)(F(true)) is monic.

2) F preserves universal quantification iff F' preserves implication and Fis internally faithful

(i.e. F'is a pointwise monic natural transformation).

Proof. Ad 1).

If F preserves implication, i.e. VI € |Eg|

Va,b € F(Q) :

d reflects the ordering and so d must be a monomorphism.

(a=bod=aod= bod, then

Conversely, if d is monic and aod < bod, then a < b as d preserves binary intersection,

whence (a = b) od =!; 0 F® o F(true) od =!j o trueo, i.e. F preserves implication.

Ad 2).

Observe that F is pointwise monic iff VA € [E| the value Fiy o : F(Q4) —— F(Q)

monic. This follows from the proof of Theorem 1.1.

If F preserves implication and is internally faithful, then

Fa: F(OA)22

F(Q)F(A) 4F(A)

defines a pointwise monic natural transformation.
Let f € Homg(A,B). We claim that F(Vy) o Fgp = Fyo0 Vs, but this follows from

commutativity of the diagram

PF(A)

FP(A)

lsegprp(a) PPF(A)
P(Fa)

1 PFP(A)
Fp(a)

F(lsegp(ay) FPP(A)

PPEY) ., pPR(B)
2 P(Fp)

PPPD |, prp(B)
3 Fp(s)

PP, ppp(B)

QOF(A)

P{ }r(s))

5

PF({ }B)

FP({ }B)

PF(B)

FP(B)

F(4) is
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1) is commutative as Fy reflects order, being left exact and monic.

2), 3) and 4) are commutative by the naturality of F.

5) is commutative as F is left exact.

Conversely, assume that F' preserves universal quantification, then F' preserves implication.

Indeed, notice that in

(trueq,idq)

Q—=—

Q
P.B. Itme
1

the front square, 6), is both a pull back and a universal quantification diagram, and therefore

Q Q

true 6

Nr———— X

1

it follows that d preserves implication, - by chasing trueg by the external Beck-condition in the

following pull back diagram

(F(trueq),idpa))

F(Q) F(Q) x F(Q)
d dxd
TUe t 1'd
1o fruco QO {trucao idao) QO X QO

Finally, we notice that the diagram

FPA) — T pr(A)
‘F(VA) VE(a)
F(Q) d Qo
is commutative, and therefore
Fa

FPA) — ™ pRA)

F("truea™) Ttruepa)”

F(1) 1o

~

is a pull back. Now, by the above we know that d preserves implication, and as F is natural
we see that ﬁA preserves implication. It follows that F 'a reflects the ordering, and so F '4 must

be a monomorphism. Thus F is internally faithful. O

Corollary 3.4. The direct image functor R of a geometric functor on elementary topoi pre-

serves universal quantification iff it is full and faithful.

Proof. Let

L
—>
LAR

E, = Ey
R
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be a geometric functor on elementary topoi. As L preserves binary cartesian products and
the terminal object we have that R is pointwise monic iff the end adjunction v is pointwise
epic. Also, by Corollary 3.2 we have that s is monic iff v is pointwise monic. It follows that R

preserves universal quantification iff v is a natural isomorphism iff R is full and faithful. O

Corollary 3.5. The inverse image functor L of a geometric functor on elementary topoi pre-

serves universal quantification iff
the internal functor d:Q— R(Q0) has a left adjoint iff
d: L(Q) — Q and Lg.q : L(O%) — L(Q)E® are monomorphisms.

Proof. Consider the following commutative diagram

RO 20, R 0)h00) S, g, H0)
Riix),L(o) Rr(x),00

tox RL(Q)REX R(d)ECO R(S)FE)
RL(Q)*X R(Q0)tX

of 7 L ppeX — BT Ray)X

Ifd=tqo R(d) has a left adjoint a : R(Qg) ——— 2 then for all X in E we have that
Ax = ﬁL(X))QO o R(Q0)™ 0aX Htgx o R(ZX’Q od!X)y = By.

Now if f € Homg(X,Y) then RPL(f)oAx = AyoP(f). It follows that t p(x) o R(Lx o Vi) =
Bx o R(Vp(s))= V5 0 By = tp(x) o R(L(Ys) o Ly), i.e.

L(Vf) o EY = EX OVL(f).

This proves that if d has a left adjoint then L preserves universal quantification.
Conversely, assume that d and EQQ are monic. We claim that d has a left adjoint, i.e. that

d is inf-preserving. Whence we must prove that
info od = tp) o RL(infq) o R(d) = tpq) o R(L(infq) o d)
is equal to
30 infr,) = Iz° dR() o Ro, o R(infa,) =
340 tpr(ay) © R(L(ag),0 0 ") 03, oinfq,) =
tp) © R(La o 34 0 infa,),

i.e. we must prove that

L(infq)od equals EQ o3Jgoinfq,
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but this follows from noting that all the squares in the below diagrams are pull backs.

Lo =P infﬂo

LP(Q)———— PL(Q) P(Q) Qo
L(3true) 3L (true) Ftrueq trueg
LP(1)——— PL(1) P(1y) 1o
Ly El!L(l)
and
LPQ) 2 oy 4 g,
L(3true) IL(true) trueg
LP(1 LQ1 1
( ) L(!p(1)) ( ) 'Ly 0
This concludes the proof of Corollary 3.5 O

Remark. Observe that the inverse image functor of a geometric functor on elementary Boolean
topoi must necessarily preserve universal quantification as in this case d : L(2) —— 2y is an

isomorphism, and as the classical logic yields that

A EN

V24" g4 249

for any elementary Boolean topos.

We refer the reader to [9] for a nontrivial application of Theorem 3.3.

We finish this chapter with an application of Stone’s theorem for elementary topoi to the

theory of logical functors.

Theorem 3.4. Let L : E—— E, be a logical functor on elementary topoi, then L has a
left adjoint T : Ey ——— E iff L has a right adjoint R : E—— E.

Proof. Consider the following diagram

Ler

E” EY
lp ,
E L E,

which is commutative up to natural isomorphism as L is a logical functor. In Chapter 2 we saw
that the vertical functors are tripleable, and so it follows from the general theory of monads
that a left adjoint T of L gives rise to a a left adjoint L°P as E°? has coequalizers. But this
means that L has a right adjoint. Thus, the existence of T" implies the existence of R.
Suppose for a moment that we have a local homeomorphism. Then the transformation 6

yields a system of natural isomorphisms

Ox = Ox.0: PT(X)— R(L(Q)Y)
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This means that R(L(Q)%X) is orderisomorphic to PT(X) and T'(X) can therefore be de-
scribed as the singletons in R(L(£2)¥).

Now assume that L has a right adjoint R. From Corollary 3.1, Proposition 2.13 and the
fact that L is logical we get that if X € |E,| then R(L(Q)¥) is a complete Heyting algebra in
E, and if f € Homg, (X,Y) then R(L(Q2)/) generates a Stone morphism

(Ep, R(L(Q)T), Ay) : R(L(Q)Y) ——— R(L(D)").
Thus if we define the functor T': E, —— E by letting
T(X) —— R(L(2)¥)

be the extension of the atoms in R(L(Q2)X), and T(f) the restriction of E; to the extension of

the atoms, i.e. such that

R(L(©Q)Y) — 2 R(L(Q)Y)

ix 7;Y

Tx)— 1y

is commutative. Furthermore we have the end adjunction from Proposition 2.17, i.e. the Stone

morphism
fi
PT(X) «——— R(LO)X
>T>
where

Jr =iy o supr(L)x)
[ =lsegrrayx) o Plix) and
Jr =4 f* A fe and f* preserving implication and idpp(x) = fio f*.

Sublemma 3.1. The front and end adjunction t and v for L 4 R (with L logical) have left and
right adjoints on all complete lattices in E and Eq. In particular they generate Stone morphisms

whenever possible.

Proof. Let A be a complete lattice in E and consider the following diagram.

JRL(A)OEL R(L;! su mn
PRL(A) “_, RPL(A) 2, Rpp(A) SEEASMA) | pra)
Tﬂm (1) tP(A))[ (2) t/w\
idp(a supa/infa
P(A) (4) P(A) pa/inf A

As L preserves existential quantification in E we know that
s 0 A 0 Ry 4y = tp(ay o R(La).

It follows that (1) is commutative. The square (2) is commutative by the naturality of ¢. Thus

we see that ¢4 is both sup- and inf-preserving. Furthermore, as ¢ is natural it follows that 4
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must preserve all finitary operations on A. In particular if A is a complete Heyting algebra in

E, then t4 generates a Stone morphism

tal

RL(A) ta® A

tA

If Y is a complete lattice in E, we consider the diagram

T—1

L dEY) R su mn
PLR(Y) — " 1pR(Y) 2 ™), prp(y) LR ) Ry
‘EUY (3) UP(Y)l (4) vy
id sU mn
P(Y) PO P(Y) Py /infy %

The square (3) is commutative as
L(&R(Y) Oﬁy) o ’Up(y) = ER(Y) o] Evy

is simply the exponential adjoint of

EZR(Y) o EY = tPR(Y) o R(ER(Y) o 31}\/)7

and we noted in the proof of Theorem 3.2 that this equation is valid for any geometric functor.
Thus we see that vy is both sup- and inf-preserving. Again, if Y is a complete Heyting

algebra in E, then vy generates a Stone morphism

Vy !
Y vy * LR(Y)
VY
This concludes the proof of Sublemma 3.1. O

We can now construct the front and end adjunction for the asserted situation 7"+ L.

Consider for X € E, the following diagram

(d=1H)* V(o)X !

P(X) ————— S L(Q)X LR(L(Q)X)
{}x L(ix)
X ~ LT(X)

In this diagram the upper morphism is the outer left adjoint of a Stone morphism, and as L
is logical the two vertical morphisms are extensions of atoms. Thus nx exists and is determined

by the commutativity of the diagram. Furthermore
n={nx: X ———=LT(X)}xe,|

is a natural transformation, n : idg, = LT.
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The end adjunction € : TL = idg is defined for A € |E| by the following commutative

diagram
L(A R(EZ,IQ) tpa)!
R(L(Q)MA)) ———— RLP(A) —————— P(A)
iL(A) {}a
TL(A) “

whose existence follows as the upper morphism is the outer left adjoint of a Stone morphism.

nra) © Lea) = idp(a)

Consider
(=) Moy ! L(R(E M Yotp(a)!
PL(A) L(2)L(A) LR(L(Q)EA) (R(Ly)otp(ay) LP(A)
{}rca L(ircay) L({ }a)
L(4) T LTL(A) Lea) L(4)

The right adjoint of the upper morphism is
L(tp(A)) o LR(EA’Q) o ’UL(Q)L(A) o dL(A) = ZA’Q o dL(A) = EA

which is an isomorphism, and as L({ }4) o La= { }r(a) it follows that 74y o L(ea) = idp(a)-

R(L(Q)%) is atomic.

We shall verify this statement by showing that

[ =lsegrra)yx) o Plix)

is a monomorphism.
We do this by verifying that

tpr(x) © R(ET(X),Q) o R(L(2)"™)

is a right inverse (and hence the inverse) of f*.

Indeed, consider the diagram on the following page. (1),(2), (3) and (5) are commutative by
naturality. (4) commutes by the definition of L. (6) commutes as L is left exact. (7) commutes
by construction of nx. (8) is commutative as both morphisms in the square are internal functors
which are right adjoint of (d=1)% o vy qgx!.

Finally, using that R(d%X) is monic we get that

Isegr(ra)yx) © Plix) o tpr(x) o R(Lr(x)0) © R(L(Q)™) = idg(r@)x)-

This proves that R(L(2)%) is atomic.
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T(nx) o L(er(x)) = idr(x)

Consider

-1
R(Ly(x) o)otpr(x)!

60

R(L()X —> R(L(Q)LT(X)) PT(X
tLT(X) {}rx)
T(X) — ") rrrx) oo T

The right adjoint of the upper morphism is

tprix) © R(Lrix).a) © R(L(Q)™).

Now, we have just seen that this morphism is the inverse of f*, and as { }rx) =ix o f*,

it follows that T'(nx) o L(ep(x)) = idp(x).
This concludes the proof of Theorem 3.4.

O
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(x(W)DY r cemm/ (P (x(©DY
(xu(B)T)Y G (XW)gy (1 x© a0 (;_p)oxX{ }au 8
N /
()1,
(027D T (X)I1d4 o QEEEN&&/ (x@)Tayy
AC@&\NVNN I AAKAGV\HVE\NVM 9 AAXAGv\uvﬁqmmm%vNN
(X)IdTY 4 gy (x(O)DYITY RET—— (x@)DyTY
(X)Ldy e (x@)nyd, 1 (x@)mu,
(X).Ld o (x(@1Yyd R TT— (x@)DY
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In order to prevent a few wild conjectures let us mention one or two examples showing what

is not the case.

Example 1. Let

gof
Oy

C={ 1————0 } and B={ 1%0 }
SEENS O

and let
L: Sets®" — Sets®”

be the functor induced by the inclusion B C—— 3 €, then L is faithful and preserves the sub-
object classifier but not universal quantification. L has a left and a right adjoint, but L is not

a logical functor.

Example 2. Let G be a topological group and let
I: Bq; e EG

be the full subcategory of discrete continuous representations of G (the underlying group of G)
in Sets. I e. if (X,-) € |B¢| then (X, ) € |Bg] iff V& € X the isotropic group

G,={g9€Glz-g=u}

is an open subgroup of G. Bg is a coreflective subcategory of B and the coreflector is the
direct image functor of a geometric functor on elementary Boolean topoi. The inclusion functor
I preserves the subobject classifier and universal quantification. It is logic iff it has a left adjoint
iff there is a smallest open set containing the unit.
If f: & — H is a map of topological groups, then the induced geometric functor
=
Bg By

_—
£

is an essential functor iff the the image in H of any open subgroup of G is contained in a
smallest open subgroup of H. In case & and H are Boolean groups, i. e. if the topologies are
totally disconnected compact Hausdorffian, then the above condition is equivalent to either f

preserves open subgroups or f(G) is an open subgroup of H or the index [f(G) : H] is finite.

Example 3. Let € be the small category from example 1, and consider

T

op &
Sets®” Sets
A
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where A - T'. In this particular case A is both left and right adjoint to I'. The topology
generated by A -4 I' is the double negation. Thus we have an example of a “finite” topos
defined over Sets such that its centre exists and such that the centre is not closed.

This answers in the negative the first question of [1] (SLN 270) Exposé VI 8.4.7.



Appendix A

Transfinite Induction in Elementary Topoi

In this appendix we shall study the classical concept of transfinite induction in the context
of elementary topoi. Officially we establish the recursion theorem, but we believe that the
importance of this work lies in the method of proof rather than in the results themselves. In
fact the question we shall investigate is that of constructing a morphism f : A — X in an
elementary topos E, such that f is the solution of some problem @. We may think of f as
being described by its graph I'y : A >—— A x X which means that what we are looking for
is a relation R from A to X. We know, however, that such constructions can be effected by
the fixpoint theorem, i.e. we must study @ in order to obtain the idea of an approximative
relational solution. Having done this we take the internal intersection of all such, and by the
fixpoint theorem we therefore have a smallest relational solution R > A x X. In order to
verify that R is a graph we start by checking if R — A is a monomorphism, i.e. if R is a
partial graph. Once more we find that the elementary topos supplies the method: Consider the
partial graph generated by R. This is done by taking the unique existentiation of R — A and
restricting R to this subobject. Thus we only need to check that this subrelation is a fixpoint
for the internal functor defining R to get that the two relations agree, i.e. R is a partial graph.
Finally to see that the relation is globally defined we must once more study the setting and the
universal property described in ) to see that this is actually the case.

The recursion theorem established below can now be seen as a mere example of this general
method of constructing a morphism.

Let E be a fixed elementary topos. We shal use the partial graph operator in E and some
of its fundamental properties which we record below for reference.

Recall the construction of ~ in E. Let

- ex {}pxyoP({ }x)
1) X————P(X)—/——————tP(X)
idp(x)

be an equalizer diagram. Notice that { }p(x) o P({ }x) <idpx) and as { } p(xyo P({ }x) is
idempotent, it follows that the equalizer 1) is preserved by any functor. As { }x o { }p(x)©

P({ }x) ={ } x we get the following commutative square (and pull back):

64
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X— 4 P(X)
WXI {}x
X—X
1dx

Applying () to 1) we get (up to isomorphism) the idempotent equalizer diagram

2) XA % pAx X)————P(Ax X)
idp(AxX)

where u 4 x is characterized by the following elementary description:

uA,x

P(Ax X)————— P(Ax X)

IwaX
i
J—1 X
VIe|E| VRe P(AxX) VYaceA VrxeX:{(a,x) € Rouyx iff
(a,z) € RandVJ € |E| Viel Vye X :{ioa,y) € io R implies that y =i 0 x.

Pl. gax 0 3p, = (domx)? : XA — P(A), where domx = chz(nx): X — Q

P2. If R: I — P(AxX) then Risagraph (i.e. R factorsthroughT 4 x : X—— P(A4 x X))
iff R is a partial graph (i. e. Rous,ny = R) and R is globally defined (i.e. Ro3,, = 7 o "trues™)

P3. If R,S € Homg(I,P(Ax X)) and S < Rowua x then S = Souga x,
ie. ua,x0 lsegpaxx) © Jusx = UA,XO IS€IP(AxX)-

P4. If R,S,T € Homg(I,P(Ax X)) and R < Towua x, S <Tand Ro3, =503, then
R=25.

Let s : A — P(A) be a relation in E. We shall think of s as a strict J-segment, but we
shall not yet make any assumptions on s. If X is any object in E we consider the representor
A | X of partial morphisms from A to X defined on the initial segment of s.

Alx —2 x4
Px P.B. (domx)?
A—2 5 P(A)

If f € Homg(A, X) consider the lifting 27 : P(A) x A——— X of f constructed out of the

universal property of X, making the diagram
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P(A) x A i X
[ﬁx
€A A ! X

into a pull back. As Z o domx = evs o we have that zf o (domx)? = idp(a)-
A— 5 P(A)

Il 3) zf

A

Px P.B. (domx)*

A—2 5 P(A)
where flo sx =sozp and f[ o px =ida . Observe that the square 3) is a pull back.

Definition A.1. The relation s : A — P(A) is said to satisfy the principle of transfinite
induction iff VX € [E| Vh: Al X — X 3 f:A— X such that foh=f.

If f € Homg(A, X) we readily see that
4) ZfOgA, X = E|1'*f : P(A)>—>P(A X X)
This leads to the following special cases of the principle of transfinite induction.

Tl. VX €|E|] Va:P(AxX)xA— X 3 f:A— X such that

)Py x A

A
‘/f larfxid/;
X

+——PAxX)x A

is commutative.
T2. VX € |E| Vb:P(X)— X 3! f:A— X such that

A—2 s P(A

)
f ‘Hf
X+  pX)
is commutative.
Indeed, if s satisfies the principle of transfinite induction we let A € Homg(A4 | X, X) be
the morphism (sx 0 g4 x,px)oa then froh = fio(sxogax,px)oa=(sodr,,ids)oa, ie.

T1 is satisfied.
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If T1 is valid we get T2 by letting a = pg o 3, o b.

What can be said on the uniqueness of the solution of a recursion problem?
Suppose f,g € Homg(A, X) and h € Homg(A | X, X) such that f = fioh and g = g; o h.
Let

; f
N———A— =X
g

be the equalizer diagram for f and g, and consider the following pull back diagram:

A—>2 s P(A)
/N P(N)

We claim that Ay < N,ie. aof=aog.

i) ao ffopx =a=aog;opx.

ii) aof[osxogAVX:aosozfogAX:aosoEIpf:sNOEioElpf:
sNoEIioElpg:aosozlpg:aosozgogAX:aog[oongAX
and as ga,x is monic it follows that
aofrosx =aogyosx

ili) From i) and ii) we get that a o f; = a o g}, and therefore
aof=aoffoh=aogioh=aog

Observe that stated internally the inequality Ay < N reads

5) Tcha(i)7o lsegp(ay o P(s) < "cha(i)™.

Definition A.2. The relation s : A — P(A) is said to be inductive iff the internal functor
Isegpay o P(s) on P(A) has a unique fizpoint (namely "truea™) defined over 1.

Remark. From the proof of the fixpoint theorem we know that the inequality 5) gives
rise to a subobject j : N ~—— A such that "cha(j)7o lsegpa) o P(s) = "cha(j)" and such
that "cha(4)7 < Teha(i)™. Thus we conclude that inductive relations satisfy the uniqueness
property of the transfinite induction property.

Conversely, assume that s € Homg(A, P(A)) satisfies the uniqueness part of T2, and let
m € Homg(A, Q) such that "m™ = "m7o |segpa) o P(s). From this it follows that "m™ =
Tm7o |segpa)y o P(s) = Tidg " o P(m)o lsegpay o P(s) = Tidg o |segpq) o P(3) o P(s) =
Fcho(true)o Lsegp(a) © P(s o 3m) = Tchpo)(Jirue) '0 P(s 0 3m) = Ts 0 3 0 chp)(Firue)

i.e. m =503y, 0chp)(Firue). This proves that s is inductive.
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Theorem A.l. Let s: A — P(A) be an inductive relation in an elementary topos E, then s

satisfies the principle of transfinite induction

Proof. Let X € |E| and h € Homg(A | X, X) be given. We have seen that there is at most one
f € Homg(A, X) such that f; o h = f. We shall now give the explicit construction of this f.

Consider the internal functor

Isegp(axx) P(sxoga,x) p I(px.h)
—

F=P(AxX) PP(A x X) (Al X) P(Ax X)

which to a relation R from A to X assigns to any partial morphism ¢ from A to X whose

domain is an initial segment (a)s of s and whose graph is contained in R the value (a, ()h).

Explicitly,
J—1 Al XX ,xA_ Y L P(AxX)
€ (px,h)
1 W Ax X
R
PAxX)——F L P(AxX)

VIe|E| VRe P(AxX) VYa€eA VreX:{(a,z) € RoFiff
3J € |E|, Je € I (epi), 3t € A | X such that

topx =eoa,toh=coxandtosxyogyx <eoR.

By the fixpoint theorem we know that F' has a smallest such fixpoint (defined over 1) B :
1 — P(Ax X). We claim that B resolves our problem, i.e. that there exists f € Homg(A4, X)
such that B ="f"0I'4 x and such that fyoh = f.

Suppose that f € Homg (A, X). Let us compute "foI'y x o F.

I_f—lOFA,X OF: "f“oFAXo isegp(AXx) OP(gA,X)OP(SX)OH@X,h) =

Ttruea™ o 3r 0 Isegp(axx) © P(ga,x) o P(sx) o 3pyny = (1)
Ttrues o lsegp(a) © ngf o P(gax)oP(sx)oIpyny = (ii)
Ttrueso lsegp(ay 0 3z, 0 P(sx) 0 Apyny = (iii)

Ttrues o lsegp(ay o P(s) o 3yp, 03 p ny = "truea o3y 0 ny =
Ttruey ' o Hrfroh ="fiohmol'y x.
(i) Internal existential quantification preserves |-segments. (cf. chapter 2 s))
(ii) The internal Beck condition applied to the pull back diagram defined by 4).

(iii) The internal Beck condition applied to 3).
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Thus " floI'y xoF =T fiohoI'4 x showing that the fixpoints for F' of the form " f 7o'y x

are exactly the solutions of our problem.

Sublemma A.1.
If B € Homg(I, P(A x X)) and Bo F = B then
BouyxoF < Bouyx.
Sublemma A.2.
If B € Homg (I, P(A x X)) then
BowugxoF o3, =Bouax o3polsegpa)o P(s).

From Sublemma A.1 we get that the smallest fixpoint B for F' is in fact a partial graph, i.e.
B = Bouy x = BoF, and substituting this in Sublemma A.2 yields that B o3, is a fixpoint
for |segp(ay o P(s), i.e. Bo3,, = "truea” as s is inductive. Thus B is both a partial graph
and globally defined. It follows from P2 that B ="f70I'4 x for some (uniquely determined)

f-
This concludes the proof of Theorem A.1. O

Proof of Sublemma A.1.
Ax X I—2 5 PAxX)

(joa,y) i

SXOgA,X

Ky ———AlX P(A x X)

Let I € |E|, B € P(A x X) such that Bo F = B. We claim that Boua x o F < Bouy x.
Observe that Boug x o F < BoF = B as ua x <idpiaxx)-

Let Je |El,i€l,a€ A,z € X such that (a,z) € ioBouy xoF,andlet I € |[E|, j € J,
y € X such that (joa,y) € joioB=joioBoF.

We claim that y =iox.

From (a,z) € io Bougx oF we get 3K € |E|, e € J (epi), 3t € A | X such that
topx =ecoagandtoh=cozandtosxogsx <eoioBouyx.

Let e; 0 j = koe be a pull back. Then e; is epic, and ej o (joa,y) € eyojoioBoF from
which we get that 3K7 € [E|, 3f; € J; (epi), It; € A ] X such that tyopx = fioe;0joaq,
tioh= fioejoyandtjosxogax < froejojoioD.

Now
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i) (fiokot)osxogax < fiokoeoioBouyx =fioegojoioBouyx and
ii) t1osxogax < fioejojoioB and as

(fiokot)opx = frokoeoa= fioejojoa=tiopx ( = a)

def.

<

it follows that

ili) (fiokotosxogax)odp, =aos=(t108x 0ga,x) o Ip,

It follows from P4 that fiokotosxoga x =t10sx0ga x, and therefore fiokotosx =tjo0sx
as g4, x is monic. But t1opx =a = (fiokot)opx and t; 0sx = (f1 ok ot)osx whence
fiokot=t;,and so fioeoy=tioh= fiokotoh= fiokoeox = fj0e;0jox from
which we get that y = jox as fi o e is epic.

This proves Sublemma A.1. O

Proof of Sublemma A.2. Let B € Homg(I,P(A x X)), then there exists exactly one B €
Homg (I, P(X#)) such that B oua,xo }segpiaxx) = B o3y, . This follows from P3 and the
fact that g4, x is the equalizer of u4 x and tdpaxx), and as ua x is idempotent. Now

BouaxoF o3, =Bouaxolsegpaxx)o P(ga,x)oP(sx)oIipy.ny ©3p, =

Bowuga xolsegpaxx) o P(gax)oP(sx)o3p =

BOHQA,X OP(gAX) OP(SX) OE'PX :EOP(SX) OE'PX :an(domx)A OP(S) =

Bodg, 033, oP(s)=Bouaxo lsegpaxx) o3z, oP(s) =

Bowuy x o3y,0 lsegpay o P(s)
This proves Sublemma A.2. O

Theorem A.2. Inductive relations are preserved by the inverse image functor of a geometric

functor on elementary topoi.

Proof. Let

L
—>
LAR

E.___ E.
R
be a geometric functor of elementary topoi, and let s € Homg (A, P(A)) be an inductive relation
in E. We claim that the relation L(s)o L4 € Homg, (L(A), PL(A)) is inductive.
If X € |[Ey| and b € Homg, (P(X), X) we consider the diagram

LA — 9 ppay— P
L(f) 1 lL(Ef) 2 3L
L(c) ER(x)
LR(X) LPR(X) —" _, PLR(X)
vXx 3 Elvx

X b P(X).
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where ¢ € Homg(PR(X), R(X)) is the unique morphism in E making 3 commutative, and
f € Homg(A, R(X)) such that so 3y oc = f. Finally, 2 is commutative as L preserves epi-
mono-factorization and is left exact. This proves that the square is commutative.

Now, any morphism from L(A) to X is of the form L(g) o vx where g € Homg (A4, R(X)),
and if L(g) ovx = L(s) o Lo Jr(g)ovx © b, then s 0350 c = g as 2 is commutative for any
element in Homg (A, R(X)) and 3 is commutative by definition of ¢. As s is inductive we have
that f = g.

This proves that L(s) o L4 is inductive and concludes the proof of Theorem A.2. O

Theorem A.2 allows us to give the following characterization of inductive relations:

If s € Homg (A, P(A)) then s is inductive iff the following diagram is a pull back.

(IsegoP(s),idp(a)) 156G 4

P(A) x P(A) —4

P(A)

Ttrues (I) true

idy

1

Indeed, we have seen that s is inductive iff (I) is a pull back for global sections.

By Theorem A.2 we know that the functors ( ) x Z : E——— E/Z preserve inductive
relations, and as they are logical they preserve the diagram (I). But these facts imply that (I)
is a pull back in E.

Corollary A.1. Logical functors on elementary topoi preserve inductive relations.
Remarks.

i). Inductive relations are irreflexive and acyclic (indeed, the transitive hull of an inductive

relation is inductive, and therefore inductive).

ii). In any elementary topos we have the notion of a well ordered object, i.e. an internally
ordered object such that any non-empty subobject of the object has a smallest element.
In case we are in an elementary Boolean topos the classical proof that a well ordering is in
fact a linear ordering whose strict J-segment satisfies the principle of transfinite induction
is easily seen to be valid, (There is a constructive proof of this fact!). As an inverse image
functor preserves inductive relations and linearity of internal orderings, it follows that in

the case of elementary Boolean topoi an inverse image functor preserves well orderings.

This result was proved by W. Mitchell in the case of elementary Boolean topoi in which
support splits (BT’) by another method, and conjectured to be valid for all elementary
Boolean topoi (BT) [20].



Appendix B

Impredicative Constructions in Elementary Topoi

This appendix is intended to be an example of how to derive information from impredicative
constructions in elementary topoi. Formally, however, it supplies the proofs of two theorems
which were announced in ”Some Topos Theoretic Concepts of Finiteness”, [8], to which we
refer the reader for additional information.

Let us first give an example from the category of sets explaining what we mean by predica-

tive / impredicative.

The predicative approach.

Let G be a group and let A be a subset of G, then we know that the subgroup A of G
generated by A is given by

A= {Hai|ai € AUA™  neN}.
i=1
Assume that A is a commutative subset of G, i.e. Va,b € A:a-b=10>b-a. We see, by

induction on n € N, that A is a commutative subgroup of G.

The impredicative approach.

Consider the same problem once more. A can be described by
A= (\{H C G|H is a subgroup of G and A C H}.

Consider the centralizer C(A) = {b € G|Va € A:a-b=0>b-a} of A. C(A) is a subgroup of
G, and A is contained in C(A) iff A is a commutative subset of G. Now A C C(A) N CC(A),
but C(A) N CC(A) is a commutative subgroup of G and as it contains A it must contain
the smallest subgroup of G containing A. I.e. A C C(A) N CC(A). It follows that A is a
commutative subgroup of G.

We leave to the reader to verify for himself that the first proof can be lifted to any elementary
topos with a natural number object, whereas the second proof can be lifted to all elementary

topoi.

72
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Let E be a fixed elementary topos. By the fixpoint theorem we know how to perform im-
predicative constructions (such as A) in E. Now the very construction is fundamental, but in
itself it is not enough supply the proof of the problem (such as the commutativity of A) for
which the construction was performed. Fortunately, however, the fixpoint theorem yields the
additional information that we have a smallest fixpoint, and it is the understanding of this fact

that allows us to draw conclusions (such as the commutativity of A).
We shall now give a rather general example of how these ideas can be applied in E.

From Manes’ theorem for elementary topoi we know that the algebras for the internal power
monad 3l on E are the complete lattices in E. So, what is the “finitary” part of 31?7 Explicitly,
given X in E what is the subobject of P(X) generated by { }x, " falsex™ and Vp(x)?

In the category of sets we know from W. Sierpiriski that the subset asked for is the set of all
“finite” subsets of X, where “finite” refers to the lattice theoretic concept of finiteness which
serves mathematics in the topological formulation of compactness.

Given X in E let kx : K(X)»—— P(X) be the smallest subobject of P(X) which contains

{ }x, "falsex™ and Vp(x), 1. e. such that

\%
P(X) P(X) x P(X) —22 p(X)
"falsex e N1 fex xkx kx
B K(X) X K(X) X K(X) —"% |, g(X)
X

the indicated factorizations exist.
The existence of K(X) is guaranteed by the fixpoint theorem. Explicitly by applying the

following internal functors on PP(X):

“adding the singletons” =(idppxy,'pp(x)°"sx ") o Vpp(x)
(%) “adding false” =(idpp(x),'pp(x) o falsex o { }p(x)) © VPp(x)
“closing up under binary union” =App(x) 0 Pp(x),P(X) © Ipx)-
A fixpoint for () is a subobject n : N———— P(X) such that

VP(x)

P(X) P(X) x P(X) P(X)
T falsex™ {}x
n nxn n
1 N X N x N

the indicated factorization exist. The fixpoint theorem says that there is a smallest such sub-

object, namely kx.

In a situation like this we have the following two principles:
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The mapping principle. If f € Homg(P(X), A) and i : B——— A (monic) are morphisms

in E and if j : (B)f~'——— P(X) is a fixpoint for (x), then there exists a morphism f €
Hompg (K (X), B) such that foi=kxo f.

The uniqueness principle. If g,h € Hompg(K(X),C) and if i = eq(g, h) —— K(X) then
g = h provided i o kx is a fixpoint for ().

P(X)

eq(g >—>K(X) — —C.

If f € Hompg(X,Y) then as " falsex 'o3y =" falsey ™, { }xody = fo{ }y and Vpx)ody =
3y x 3y o Vp(yy we get from the mapping principle (applied to 3y and kx) that there exists a

factorization:

P(X) —2— 5 P(Y)

kx ky

K(f)

K(X) K(Y)

It follows that the assignment X — K(X) and f — K(f) defines a functor
K:E—E that
k={kx : X—= K(X)}xcg| and
k={kx : K(X)——P(X)}xeg|

define pointwise monic natural transformations, k :idg = K, k: K = Jand ko k = { }.

Consider 35, ol Jy. As this internal functor has a right adjoint, namely |segp x)oP(kx) and

as { }x(x)°3rx ©Ux = kx we get from the mapping principle that there exists a factorization:

PK(X) N PP(X) _Ux | P(X)
kr(x) kx
KK(X) - K(X).



APPENDIX B. IMPREDICATIVE CONSTRUCTIONS IN ELEMENTARY TOPOI (0]

As k is pointwise monic and natural it follows that

p={ux: KK(X) — K(X)}xepg|

defines a natural transformation p : KK = K such that IK = (K, x.u) is a monad on E and

such that k& : IK = 3l is a transformation of monads.

Let Cy(E) be the category of upper semilattices in E with smallest global section, and right

exact morphisms.

Proposition B.1. Cy(E) is isomorphic to EX.

Proof. The functor I : E¥X — Cy(E) is defined as follows: I(A,&: K(A) — A) = (4,V,0),
I(f) = f where V=r4 X kaoVpayo&and 0= fyof.

The functor .J : Co(E) — E¥ is constructed in the following way.
If (A,V,0) € |Co(E| we construct the extension of those subobjects of A which have a sup
in A as the inverse image of tseg4 along Tsegp(a) o P(lsega). As this extension is readily seen

to be a fixpoint for (%), by the mapping principle we get the following factorization:

Tsegp sega
P(A) 2P, ppray ZHeon) pxy
kA kX
Ev
K(A) A

This leads to the definition J(A4,V,0) = (4,&v), J(f) = f.

The fact that I is a well defined functor is a purely diagrammatic proof, recalling that V is
to be idempotent, associative and commutative. 0 is zero as " false4 ' is zero. Morphisms are
obvious.

The fact that J is a well defined functor follows as &, is constructed out of “the sup of
subobjects having a sup”, and the uniqueness principle applied to the appropriate morphisms.
Likewise for morphisms.

The passage (4,V,0) — (A,&/) — (A, V,0) is the identity as & is the restriction of sups.

The passage (A4,§) — (4,V,0) — (A,&) is the identity by the uniqueness principle. O

Recall that the cotensorial strength

A={Axy : PYY) ——— P(Y) Y xv)emIxE
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for 3l is a pointwise co-continuous internal functor preserving singletons in the following sense
{ }xv o Axy = ({ }y)¥. Thus from the mapping principle (applied to Axy and (ky)X) we

get a new factorization:

PYX) XY, py)X

kyx (ky)*

KX 2 K(¥)X

) extends to a cotensorial strength for K, and as the associated tensorial strengths for K
commute with &, and 3 is symmetric, we get that K is a symmetric monoidal sub- (via k)
monad of 3l In particular we have a monoidal transformation § making the following diagram

commutative:

PX,Y

P(X) x P(Y) P(X xY)

kx xky kxxvy
KX) X KY) — L K(XxY)

Definition B.1 (Sierpinski [23]). An object X in E is said to be K-finite iff "truex ™ belongs
to K(X), i.e. iff there is a factorization:

P(X)
kx

Ttruex

1 K(X)

tx

(Actually in Sierpinski’s original definition on page 106 in [23] finite sets are non-empty.)
The following remarks are contained in [3], though the proofs given here are of another

nature.

1). The initial object & is K-finite.
Proof. P(92) is the terminal object, whence "truey” =" falseg™. O
2). The terminal object 1 is K-finite, and K (1) = 2.

Proof. { }1 ="true?. 2 —— Q is closed under binary union and generated by true and
false. O

3). If X is K-finite and f: X —» Y is epic, then Y is K-finite.

Proof. As "truex o3y = Ttruey " as f is epic, we have that tx o K(f) is the proof that
Y is K-finite. O

4). If X and Y are K-finite, then X x Y is K-finite.
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Proof. As ("truex™,"truey ) o pxy = "truexxy ' we have that (tx,ty)o px,y is the
proof that X x Y is K-finite. O

5). If K(X) is K-finite then X is K-finite.

Proof. As 3. o Jpx o Uy = idp(x) we have that
Ttruex = "trueg(xy' o Iy © Uy, and therefore tx(x) o ux is the proof that X is
K-finite. O

6). We leave to the reader the pleasure of discovering a proof of the fact that the coproduct
of two objects in E is K-finite iff each of the objects is K-finite. (There is an alternative

proof in [8]).

7). As a consequence of 2) and 6) we see that K(1) =2 =1+ 1 is K-finite.

As for the proofs of 1) - 7), they are only given here in order to illustrate how to derive
information from the impredicative construction K. In [8], it is shown that K-finiteness has a
predicative description, and as this description is valid in any elementary topos, it is clear that

we should profit from this description. (Cf. Theorem B.2 below).

Theorem B.1. The inverse image functor of a geometric functor on elementary topoi preserves
K -finite objects.

Proof. Let

L
—>
LAR

E,  E,
R

be a geometric functor of elementary topoi.
If X € |E| we claim that there is a morphism [x from LK(X) to K L(X) such that

LP(X) _Ix PL(X)

L(kx) kr(x)

LE(X) —2 5 KL(X)
is commutative.
Recall that the adjoint of Ly, tp(x) © R(Lx) : P(X) ——— RPL(X), is an internal
functor having a right adjoint. As { }x otpx) o R(Lx) = tx o R({ }x), it follows from the
mapping principle (applied to tp(x) o R(EX) and R(kp(x))) that there exists a factorization:

tp(x)oR(Lx)

P(X) RPL(X)
]cx R(kr(x))
K(X) RKL(X)

This proves the assertion on the existence of [x.
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As L("truex™) o Ly = Ttruer(xy”, it follows that if X is K-finite then L(tx) oly is the
proof that L(X) is K-finite.
This concludes the proof of Theorem B.1. O

Remark. In the notation of Theorem B.1 we have that [x is an epimorphism. Indeed, as
L{}x)oLx ={ }r(x), and as [y is right exact, it follow that the image of [x considered as
a subobject of PL(X) is a fixpoint for (). This shows that {x is epic. If L preserves universal

quantification then [x is iso.

The final section contains a number of terms undefined in this work. They are all taken

from [8] to which we refer the reader for the definitions and theorems applied.

Let B be a complete Heyting algebra in E, and assume that B is an algebraic lattice in E,
and let s : S(B) > B be the extension of the intranscessible elements in B.
Consider the pull back diagram:

B— " pB) LY, ps(B)
i P.B. kss)
Q KS(B)

We claim that the subobject i : Q——— B is a Cy(E)-subobject of B, and that the exten-
sion ip : T(B)~——— B of the atoms of B is contained in Q.

1). Let 0 : 1 ——— B be the smallest global section in B. As 0 is intranscessible we have

the following commutative diagram (pull back)

S(B)»>——B
idy
1——1

Now 0o Jsegs o P(s) =00 { }g o P(s) = { hoFoo P(s) = { }1 03 = 0o { }5(s). (Using
0 4!p, and the internal Beck condition applied to the square). It follows that 0 factors through

Q, i.e. we have a commutative diagram:

2). Consider the following diagram:
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B x By 292X9r , pigyy p(B) LY, pg(B) x PS(B)
PB.B 11 Ds(B),5(B)
v I P(B x B) ——")_, p(8(B) x S(B))
EW i EM
B — P(B) — PS(B)

The square I is commutative as B is a distributive lattice. The square II is commutative by
the naturality of p with respect to P. The inequality in the last square follows from the fact
that S(B) is an upper-sub-semilattice of B.

We claim that the outer square is commutative.

Let ag, a1 be elements in B and let ¢ be an intranscessible element in B such that ¢ < agVay.
The trick is to notice that ¢; = ¢ A a; is the sup of a family A; of intranscessible elements below
a;. It follows, by distributivity, that ¢ is the sup of AgVA; as c is intranscessible.

This shows the asserted commutativity. It follows that we have a commutative diagram

BxB—Y B

RQXQ——Q

3). Let a: 1 — B be an atom in B (defined over 1).
As (a) |segp ~ Q ~ P(1), we have that S((a) }segp) ~ SP(1) = K(1) = 2, which is K-finite.
Thus a factors through Q.

Applying this argument to the atom (ip, idp(p)) : T(B)——B xT(B) in the topos E/T'(B)
yields that ip : T(B) —— B is contained in Q.

Recalling that SP(X) = K(X) and that the atoms in P(X) are the singletons we get @ is a
fixpoint for (*) in the case B = P(X). Thus there exists a morphism cegx : K(X)——KK(X)

such that

lse c
P(X) ", pp(x) ), pr(x)

kx kr(x)

K(X) 79X KK(X)
is commutative.

If X is K-finite. then tx o oegy is the proof that K (X) is K-finite as "truex "o |segp(x) o
P(kx) = ’_trueK(X)—'.

Taking into account these remarks and 5) above we record

Theorem B.2. An object X in an elementary topos E is K -finite iff K(X) is K-finite.
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