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Introduction

Elementary topoi [5], [15], [10], [4], [16], [26] are categories with many aspects in common with

the category of sets, but they also generalize sheaf categories Top(X) as well as categories of

continuous discrete representations of topological groups BG, and many others [1], [15], [9], [16],

[26].

Any elementary topos E has the rudiments of algebra, i.e. all finite inverse limits, and

in the same way as the classical logic is coded into the category of sets by means of the two

element set 2 we have an intuitionistic logic built into the subobject classifier Ω in E, but the

way mathematics develop in E is in the interaction of these concepts and higher order which

lives in E in the form of power objects, much like power sets in Sets.

For various purposes one may assume that elementary topoi have additional properties such

as satisfying the axiom of infinity, being Boolean or even satisfying the axiom of choice [15], but

here we shall primarily be interested in the properties indicated above and which are common

to all elementary topoi.

Any construction which can be performed in an elementary topos E in accordance with

the axioms generally allows an internal form, i.e. a combinator which is a morphism in E

constructed out of the axioms in such a way that evaluating the combinator on global sections

yields cases of the original construction and such that the combinator is preserved by logical

functors, in particular by the functors ( ) × A : E → E/A. It follows from the principle of

extensionality for categories that these properties characterize the combinators. Furthermore,

the essential properties of a construction are coded into its combinator in an equational or

equally well understood way.

We shall apply the combinators extensively in the presentation. The idea is that we may

as well construct the combinators and derive their properties directly. The constructions in

question can whenever they are needed always be obtained be evaluation. E. g. to see that E

has epi-mono-factorization we construct the combinator associated with this property, namely

the internal existential quantification which to a morphism f : A → B assigns the internal

functor ∃f : P (A)→ P (B) given explicitly as the composite

∃f = P (A)
↑segP (A)

// PP (A)
PP (f)

// PP (B)

⋂
B // P (B)

and characterized by ∃f a P (f), i.e. the internal existential quantification along f is left adjoint

to the internal substitution along f , and we may define the image of f by the equation:

pchB(im(f))q = ptrueAq ◦ ∃f .

ii
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The virtue of this approach is that we are now able to single out the essential points in

the arguments via the properties of the combinators, and most proofs reduce to equational

calculations, to comparison of inequalities or to applying the uniqueness theorem for adjoint

internal functors, and we do not have to use repeatedly boundless diagrammatic constructions.

Originally [5] elementary topoi were defined to be left and right exact cartesian closed

categories with a subobject classifier, and consequently the semantics, and in particular its

existential part, was based on these axioms [21]. We shall prove that the right exactness is a

consequence of the remaining axioms, and therefore we are not allowed to apply at least the

existential part of the semantics in our arguments. For this reason we shall derive directly

the elementary description for most of the constructions we perform, but we shall also do so

because this is the way semantics comes about. The semantics is not a logical system we have

got to learn before we can do anything else.

Due to the fact that the logic of an elementary topos E is not necessarily Boolean we

now have the possibility of investigating the logical invariance of properties of a mathematical

concept. The example in appendix 2 shows that the property that an arbitrary subobject of a

finite object is itself finite is accidental, i.e. it depends on the logic in E. Indeed, this property

is valid iff the logic in E is Boolean. On the other hand, all the remaining properties usually

connected with the concept of finiteness are consequences of this concept itself, i.e. they are

independent of the logic in E and valid in all elementary topoi.

The outcome of pointwise investigations of this kind may, as the example shows, be rather

surprising, but there is still a much more dynamic question to be resolved: To what extent

is a mathematical concept preserved by geometric functors on elementary topoi? In the case

of local homeomorphisms, i.e. when the inverse image functor is logical, any construction

based on the axioms will be preserved by the inverse image functor. Despite the trivial nature

of this statement it is extremely important, allowing the good notion of combinators. As

for the general case of geometric functors we shall make a detailed study of this question of

invariance for internal completeness of internally ordered objects, for universal quantification,

for the principle of transfinite induction and for the concept of Sierpiński-finiteness. The ideas

involved in these studies are quite general and may easily be applied to other situations.

By studying a mathematical concept relative to an elementary topos E we may grind the

concept such that it becomes a more efficient mathematical tool. E.g. studying the concept

of an atom in E allows us to establish not only Stone’s characterization of power objects in E

explaining the tripleability of P : Eop → E, but we also see that the ground concept of atoms

is now strong enough to verify that a logical functor with a right adjoint is essential, i.e. it has

a left adjoint, as well as to prove that if X is a finite object in E, then K(X) is also finite (in

Sets this means that the set of finite subsets of a finite set is a finite set itself).

The title “Lattice Theoretic and Logical Aspects of Elementary Topoi” may be a bit mis-

leading as it refers to the methods of proof rather than to the content itself. Indeed, what

this work is actually about is an investigation of some of the naive set theoretical methods and

results of the 20’s and 30’s studied in the context of elementary topoi, not only in order to

obtain a better understanding of these ideas themselves by viewing them under the new pos-

sibility of changing the logic and the universe of discourse, but also in order to apply some of
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these powerful ideas of Sierpiński, Stone, Tarski and other mathematicians of these decades not

only to elementary topoi one by one but also to the continuous transformation along geometric

functors.

I would like to thank A. J. Kock and G. C. Wraith for explaining the subject to me in

their lectures on “Elementary Toposes”, F. W. Lawvere for pointing out the possibilities of

Mathematics in his lectures on ”The Foundation of Analysis”, and all three of them for their

capable mathematical guidance, discussions, criticism and personal friendship.



Chapter 1

Definition and Technical Tools

An elementary topos is a left exact category E with an exponentiable subobject classifier

true : 1� Ω.

Thus an elementary topos E has a terminal object 1, binary cartesian products and equal-

izers.

For each object X in E the map

inX : HomE(X,Ω)→ P∗(X)

which to a morphism f : X → Ω assigns the subobject of X which is represented by the inverse

image of true along f is a bijection.

The elements of the set HomE(X,Ω) will be called characters, and the inverse of inX will

be denoted chX .

Finally, the exponentiability of the subobject classifier means that there exists a contravari-

ant functor

P : Eop → E

and a natural isomorphism

cB,A : HomE(B ×A,Ω)→ HomE(B,P (A)).

If f ∈ HomE(A,B) we shall think of f as a map from A to B or as an element of B defined

on A, and accordingly we shall use the notation f : A → B or f ∈ B. The latter symbol

suppresses the domain of definition of f but as this is always a well-defined object in E the

missing index will cause no ambiguity.

We begin the study of elementary topoi with a result which is due to A. Kock.

Theorem 1.1. Any elementary topos E is cartesian closed, i.e. it has exponentiation.

Proof. First we observe that the internal power objects (i.e. the objects of the form P (A)) are

exponentiable.

Indeed, if A ∈ |E| then the contravariant functor

PA : Eop → E

given by PA(B) = P (B ×A) and PA(f) = P (f × idA) and the natural isomorphism

dC,B,A : HomE(C ×B,P (A))→ HomE(C,PA(B))

1
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determined uniquely by the following commutative diagram

HomE((C ×B)×A,Ω) HomE(C × (B ×A),Ω),oo a∗

HomE(C ×B,P (A))

HomE((C ×B)×A,Ω)

OO

c

HomE(C ×B,P (A)) HomE(C,PA(B))
d // HomE(C,PA(B))

HomE(C × (B ×A),Ω),

OO

c

i.e. dC,B,A = c−1
C×B,A ◦ a

−1
C,B,A

∗ ◦ cC,B×A proves that the object P (A) is exponentiable.

Recall the construction of { }A : A→ P (A) of the diagonal on A under the bijection:

P∗(A×A)
ch //HomE(A×A,Ω)

c //HomE(A,P (A))

∆A 7−→ δA 7−→ { }A

If N ∈ |E| a, b ∈ A (i.e. a, b ∈ HomE(N,A)) then

a ◦ { }A = b ◦ { }A iff

a× idA ◦ δA = b× idA ◦ δA iff

〈idN , a〉 = 〈idN , b〉 iff

a = b

i.e. { }A : A→ P (A) is a monomorphism.

Consider the pull back diagram

A 1
! //

P (A)

A

OO

{ }A
OO

P (A) Ω
sA // Ω

1

OO

true

OO

i.e. sA = chP (A)({ }A).

As the transformation d−1
C,B,A ◦ sA∗ ◦ cC,B is natural in C and B there exists, by the Yoneda

lemma, a uniquely determined morphism

sB,A : PA(B)→ P (B)

such that the diagram

HomE(C ×B,P (A)) HomE(C ×B,Ω),
sA∗ //

HomE(C,PA(B))

HomE(C ×B,P (A))

OO

dC,B,A

HomE(C,PA(B)) HomE(C,P (B))
sB,A∗

// HomE(C,P (B))

HomE(C ×B,Ω),

OO

cC,B

is commutative and such that sB,A is natural in B, i.e. such that for all f ∈ HomE(B,D)

PA(D) P (D)
sD,A

//

PA(B)

PA(D)

OO

PA(f)

PA(B) P (B)
sB,A

// P (B)

P (D)

OO

P (f) 1

P (B)

jj
ptrueBq

jj

1

P (D)

tt

ptrueDq
tt
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is a commutative diagram.

Thus if we define AB and ΓB,A by the following pull back

AB 1//

PA(B)

AB

OO

ΓB,A

OO

PA(B) P (B)
sB,A

// P (B)

1

OO

ptrueBq

OO

we have that the assignment B 7→ AB extends to a subfunctor of the functor PA, i.e. given

f ∈ HomE(B,D) there exists a uniquely determined morphism Af : AD → AB such that

AD AB
Af //

PA(D)

AD

OO

ΓD,A

OO

PA(D) PA(B)
PA(f)

// PA(B)

AB

OO

ΓB,A

OO

is commutative.

Now

f1 : C → AB iff

f2 : C → PA(B) and f2 ◦ sB,A = !C ◦ ptrueBq iff

f3 : C ×B → P (A) and f3 ◦ sA = trueC×B iff

f4 : C ×B → A

under f2 = f1 ◦ΓB,A and d−1
C,B,A(f2) = f3 = f4 ◦ { }A, from which it follows that there exists a

bijection dC,B,A, natural in C and B making the diagram

HomE(C ×B,A) HomE(C,AB),
dC,B,A

//

HomE(C ×B,P (A))

HomE(C ×B,A)

OO

{ }A∗

OO

HomE(C ×B,P (A)) HomE(C,PA(B))
dC,B,A

// HomE(C,PA(B))

HomE(C,AB),

OO

ΓB,A∗

OO

commutative.

Thus the assignment A 7→ AB may be extended to a covariant functor ( )B from E to E

such that d becomes a natural isomorphism, i.e. we have that ( )×B a ( )B .

This concludes the proof of Theorem 1.1.

The cartesian adjunction

dC,B,A : HomE(C ×B,A)→ HomE(C,AB)

comes in the usual way [3] with a pair of (super-) natural transformations:

uC,B : C → (C ×B)B

evB,A : AB ×B → A.
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Notice that the functor P is natural isomorphic to Ω( ) by the uniqueness theorem for adjoint

bifunctors. Thus we may assume that P = Ω( ), but we shall keep the notation P for typo-

graphical reasons.

If i : A� X is a monomorphism in E, then i is the equalizer of chX(i) and trueX =!X ◦true
by the definition of characters. It follows that E is balanced.

E is well-powered as chX : P∗(X)→ HomE(X,Ω) is an isomorphism. This means that P∗
extends by pull backs to a contravariant functor

P∗ : Eop → Sets.

Notice that this functor factors through Ls, the category of lower semilattices with greatest

element and left exact maps, and that P∗ is representable by the subobject classifier via the

natural isomorphism

(1) chX : P∗(X)→ HomE(X,Ω).

From this it follows that Ω carries a uniquely determined lower semilattice structure with

true : 1 � Ω the greatest global section, and such that the natural isomorphism (1) lives in

Ls.

As the functors ( )A : E → E are left exact, these functors induce 2-functors on the 2-

category Ls(E) of lower semilattice objects and left exact morphisms in E, and therefore the

lower semilattice object (Ω,∧, true) in E induces an Ls(E)-structure on the internal power

objects P (A) in E. Observe that this structure (P (A),∧P (A), ptrueAq) on P (A) is determined

by the fact that the natural isomorphism

(2) P∗(B ×A)
chB×A

//HomE(B ×A,Ω)
cB,A

//HomE(B,P (A))

lives in Ls.

Combining the classifying property of Ω and the exponential adjointness as in (2) shows

that a relation R� B ×A corresponds under chB×A to a character ch(R) : B ×A→ Ω which

again is given via cB,A by a morphism ↑segR : B → P (A) (the ↑-segment of the relation R). In

particular we see that

ch(R) =↑segR × idA ◦ evA,Ω.

Based on these observations we define the universal ε relation on A by the following

pull back diagram

εA 1.
! //

P (A)×A

εA

OO

OO

P (A)×A Ω
evA,Ω

// Ω

1.

OO

true

OO

The fact that the relation R � B × A can be obtained as the inverse image of εA along

↑segR × idA leads us to introduce the following terminology:

If N ∈ |E| M ∈ P (A) and a ∈ A (i.e. M : N → P (A) and a : N → A) we shall

write
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(3) a ∈ M iff 〈M,a〉 ◦ evA,Ω = trueN

i.e. ∈ is a well defined relation on the set

HomE(N,P (A))×HomE(N,A).

In this terminology we have for a fixed relation R� B ×A in E :

∀N ∈ |E| ∀b ∈ B ∀a ∈ A :

〈b, a〉 factors through R iff

〈b, a〉 ◦ ch(R) = trueN iff

〈b◦ ↑segR, a〉 ◦ evA,Ω = trueN iff

a ∈ b◦ ↑segR

It is important for the understanding to observe that these relations are stable under left-

composition, i.e. if M ∈ |E| n ∈ N and a ∈ b◦ ↑segR then n ◦ a ∈ n ◦ b◦ ↑segR. This is an

easy consequence of the universal property of pull backs.

The elements of HomE(B,P (A)) should be thought of as B-indexed families of subobjects

of A. This point of view is supported by the following:

Extensionality Principle. If M,N ∈ HomE(B,P (A)) i.e. M and N are B-indexed

families of subobjects of A then

M = N iff M and N have the same elements, i.e.

∀I ∈ |E| ∀b ∈ B ∀a ∈ A : a ∈ b ◦M iff a ∈ b ◦N .

If R� B × A is a relation in E, and Q is a property which makes sense in Sets for a binary

relation, then we say that R satisfies the property Q iff ∀N ∈ |E| the induced relation on the

set HomE(N,B)×HomE(N,A), given by ∀b ∈ B ∀a ∈ A: bRa iff 〈b, a〉 factors through R, has

the property Q.

E.g. if R� A×A, we say that R is reflexive iff

∀I ∈ |E| ∀a ∈ A : a ∈ a◦ ↑segR.

We shall not bore the reader with repeating the definitions of transitivity, symmetry and

antisymmetry of a relation in E.

An internally ordered object in E is a pair (A, ↑segR) where A ∈ |E| and ↑segR : A→ P (A)

is the ↑-segment of a relation R� A×A which is reflexive, transitive and antisymmetric.

If (A, ↑segR) is an internally ordered object in E we shall frequently write ↑segA =↑segR
and use the more suggestive notation

a ≥ b iff aRb iff a ∈ b◦ ↑segA (= a ∈ b◦ ↑segR),
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where a and b are elements of A defined on N , say.

Any lower semilattice object (A,∧) in E carries a canonical internal order relation which is

constructed by the following equalizer diagram:

R A×A// // A×A A
∧ //

A×A A
pr0
//

i.e. ∀N ∈ |E| ∀a, b ∈ A : a 6 b iff a = a ∧ b.
By applying this to the internal power objects in E we see that the lower semilattice structure

defined by the natural isomorphism (2) defines an internal ordering (the canonical ordering) on

the objects P (A). We shall use the notation (P (A), ↑segP (A)) for this ordering on P (A).

Let us record the defining property of the canonical ordering on P (A):

If B ∈ |E| M,N ∈ P (A) then M 6 N iff

∀I ∈ |E| ∀b ∈ B ∀a ∈ A : a ∈ b ◦M implies a ∈ b ◦N

Notice that the extensionality principle is stating that the canonical ordering ↑segP (A) on

P (A) is antisymmetric.

If f ∈ HomE(A,C) I ∈ E M ∈ P (C) and a ∈ A then

(4) a ∈ M ◦ P (f) iff a ◦ f ∈ M.

This rule is one of the most important features of P (f) (the internal substitution along f).

The proof is a direct translation of the supernaturality of ev :

P (f)× idA ◦ evA,Ω = idP (C) × f ◦ evC,Ω.

If (A, ↑segA) and (B, ↑segB) are internally ordered objects in E, a morphism f ∈ HomE(A,B)

will be called an internal functor from A to B provided ∀N ∈ |E| the map

HomE(N, f) : HomE(N,A)→ HomE(N,B)

is order-preserving, i.e.

∀N ∈ |E| ∀x, y ∈ A : x 6 y implies x ◦ f 6 y ◦ f.

Notice that we can express that f is an internal functor by the following inequality

↑segA 6 f◦ ↑segB ◦ P (f)

Notice that the internal substitution along a morphism is an internal functor.

Let Ord(E) be the 2-category of internally ordered objects in E and internal functors. (The

2-structure comes from the order on the hom sets).

If R� B×A is a relation in E we may consider the inverse relation R−1 � A×B = R�

B ×A→
∼
A×B, where the isomorphism is the cartesian twist.

The morphism ↑segR−1 is denoted ↓segR (the ↓-segment of the relation R).
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∀N ∈ |E| ∀b ∈ B ∀a ∈ A :

(5) b ∈ a◦ ↓segR iff a ∈ b◦ ↑segR.

If R� A×A then R is symmetric iff ↓segR =↑segR. Likewise R is reflexive iff { }A 6↑segR
iff { }A 6↓segR. Also, R is transitive iff one of the four equivalent inequalities is satisfied:

i) ↓segR 6↓segR◦ ↓segP (A) ◦ P (↓segR)

ii) ↓segR 6↑segR◦ ↑segP (A) ◦ P (↑segR)

iii) ↑segR 6↓segR◦ ↑segP (A) ◦ P (↓segR)

iv) ↑segR 6↑segR◦ ↓segP (A) ◦ P (↑segR)

If R is reflexive and transitive then i) - iv) are equalities. In this case R is antisymmetric

iff ↓segR is monic iff ↑segR is monic.

The involution ↑segR ←→↓segR makes it possible to introduce the notion of contravariant

internal functors on internally ordered objects in E. If (A, ↑segA) and (B, ↑segB) are in Ord(E),

a morphism g ∈ HomE(A,B) will be called a contravariant internal functor from A to B

provided ∀N ∈ |E| the map

HomE(N, g) : HomE(N,A)→ HomE(N,B)

is order reversing, i.e.

∀N ∈ |E| ∀x, y ∈ A : x 6 y implies y ◦ g 6 x ◦ g.

or equivalently

↓segA 6 g◦ ↑segB ◦ P (g)

Notice that if (A, ↑segA) ∈ |Ord(E)| then ↓segA is an internal functor from (A, ↑segA) to

(P (A), ↑segP (A)), and ↑segA is a contravariant internal functor on the same objects.

Any 2-category admits the theory of adjoint 1-cells. For Ord(E) we shall use the following

terminology. If

(6) (A, ↑segA) (B, ↑segB))

f
//

(A, ↑segA) (B, ↑segB))oo
g

is a diagram in Ord(E) then

f a g iff

∀N ∈ |E| : HomE(N, f) a HomE(N, g) iff

∀N ∈ |E| ∀a ∈ A ∀b ∈ B : a ◦ f 6 b iff a 6 b ◦ g iff

f◦ ↑segB =↑segA ◦ P (g) iff

↓segB ◦ P (f) = g◦ ↓segA iff
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idA 6 f ◦ g and g ◦ f 6 idB .

Adjoint internal functors determine each other uniquely as the order relations are antisym-

metric. If f a g then f = f ◦ g ◦ f and g = g ◦ f ◦ g. It follows that if f a g then

f is monic iff g is epic iff idA = f ◦ g

and

f is epic iff g is monic iff g ◦ f = idB .

By dualizing we get the notion of contravariant internal functors adjoint on the right. If in

(7) (A, ↑segA) (B, ↑segB))

r //

(A, ↑segA) (B, ↑segB))oo
s

r and s are contravariant internal functors then

r ⊥ s iff

∀N ∈ |E| : HomE(N, r) ⊥ HomE(N, s) iff

∀N ∈ |E| ∀a ∈ A ∀b ∈ B : b 6 a ◦ r iff a 6 b ◦ s iff

s◦ ↓segA =↑segB ◦ P (r) iff

r◦ ↓segB =↑segA ◦ P (s) iff

idA 6 r ◦ s and idB 6 s ◦ r

etc.

The composition of adjoints and of adjoints on the right follows the classical rules.

The category Ord(E) has finite inverse limits and the forgetful functor from Ord(E) to E

preserves them.

(1, ptrueq) is the terminal object in Ord(E). Notice that any global section in an internally

ordered object in E is automatically an internal functor.

If

A B

f
//

A B
g

//K A// i //

is the underlying equalizer diagram of a pair of internal functors f and g, then

↑segK = i◦ ↑segA ◦ P (i)

equips K with the structure of an internally ordered object such that

(A, ↑segA) (B, ↑segB)

f
//

(A, ↑segA) (B, ↑segB)
g
//(K, ↑segK) (A, ↑segA)// i //
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is an equalizer diagram in Ord(E).

If A,B ∈ |E| consider the morphism

(8) p̃A,B : P (A)× P (B)
P (p0)×P (p1)

// P (A×B)× P (A×B) ∧P (A×B)

// P (A×B)

which is uniquely determined by the rule:

∀N ∈ |E| ∀S ∈ P (A) ∀T ∈ P (B) ∀a ∈ A ∀b ∈ B :

〈a, b〉 ∈ 〈S, T 〉 ◦ p̃A,B iff a ∈ S and b ∈ T .

If (A, ↑segA) and (B, ↑segB) are in Ord(E) then

↑segA×B =↑segA× ↑segB ◦ p̃A,B

is the order relation on A×B which makes

(A, ↑segA)←−
p0

(A×B, ↑segA×B) −→
p1

(B, ↑segB)

a cartesian product diagram in Ord(E).

If (A, ↑segA), (B, ↑segB) and (C, ↑segC) are in Ord(E) and if ◦ : A×B −→ C is an internal

(bi-) functor, we say that ◦ admits an exponential → (◦ expo →) iff there exists an internal

(bi-) functor →: Bop × C −→ A such that

∀N ∈ |E| ∀a ∈ A ∀b ∈ B ∀c ∈ C :

(9) a ◦ b 6 c iff a 6 b→ c

Clearly, ◦ and → determine each other uniquely.

Proposition 1.1. Let ⇒: Ω× Ω −→ Ω be the exponential adjoint of ↑segΩ : Ω → P (Ω), then

⇒ is an internal (bi-) functor and ∧ expo ⇒. (⇒ is called the implication on Ω).

We leave the proof of this proposition to the reader as it can be found in any treatment of

elementary topoi, but we shall give the proof of the following proposition which equips Ω with

a binary union.

The idea is the following. As (Ω,∧, true,⇒) is a Heyting algebra object in E, if it has a

binary union ∨ : Ω× Ω→ Ω this union must satisfy the equation

(10) (a ∨ b)⇒ c = (a⇒ c) ∧ (b⇒ c)

for all elements in Ω with domain N , N ∈ |E|.
Let s : Ω× Ω→ P (Ω) be the exponential adjoint of the morphism

(Ω× Ω)× Ω
id×∆−→ (Ω× Ω)× (Ω× Ω)

m−→ (Ω× Ω)× (Ω× Ω)
⇒×⇒−→ Ω× Ω

∧−→ Ω

where m is the middle four interchange [3], and let ∨ be the upper morphism in the pull back

diagram:



CHAPTER 1. DEFINITION AND TECHNICAL TOOLS 10

S 1//

Ω× Ω

S

OO
Ω× Ω P (Ω)

s // P (Ω)

1

OO

pidΩq

1 1//

P (Ω)

1

OO

pidΩ

P (Ω) Ω// Ω

1

OO

true
N

Ω× Ω
〈a,b〉

77

M

N

i

OO

M Ω
c //

By the construction of ∨ we have that

∀N ∈ |E| ∀a, b ∈ Ω a ∨ b = trueN iff

∀M ∈ |E| ∀c ∈ Ω : (i ◦ a⇒ c) ∧ (i ◦ b⇒ c) = c

Proposition 1.2. The operation ∨ : Ω× Ω→ Ω is a binary union on Ω.

Proof.

K M
j
// M N

i // N Ω× Ω
〈a,b〉

//K

Ω

f
��

N

Ω

d
��

If N ∈ |E| ∀a, b, d ∈ Ω and a 6 d and b 6 d then a ∨ b 6 d.
Indeed, if M ∈ |E| ∀i ∈ N and i ◦ a ∨ i ◦ b = trueM , then

i ◦ d = (i ◦ a⇒ i ◦ d) ∧ (i ◦ b⇒ i ◦ d) = trueM ∧ trueM = trueM ,

it follows that a ∨ b 6 d.

On the other hand, a 6 a ∨ b. Indeed, if M ∈ |E| i ∈ N and i ◦ a = trueM , then

∀K ∈ |E| ∀j ∈M ∀f ∈ Ω :

(j ◦ i ◦ a⇒ f) ∧ (j ◦ i ◦ b⇒ f) = (trueK ⇒ f) ∧ (j ◦ i ◦ b⇒ f) = f ∧ (j ◦ i ◦ b⇒ f) = f,

whence i ◦ a∨ i ◦ b = trueM , and so a 6 a∨ b. Dually b 6 a∨ b. It follows that (10) is generally

valid.

This concludes the proof of Proposition 1.2.

Using the fact that the functors ( )A are left exact we see that the internal power objects

are equipped with an implication ⇒P (A) and a binary union ∨P (A).

Proposition 1.3. ∀A ∈ |E| : ↓segA ◦ P ({ }A) = idP (A).

Proof. ∀I ∈ E ∀M ∈ P (A) ∀a ∈ A :

a ∈ M◦ ↓segP (A) ◦ P ({ }A) iff

a ◦ { }A ∈ M◦ ↓segP (A) iff

a ◦ { }A 6M iff

a ∈ M

i.e. ↓segA ◦ P ({ }A) = idP (A).
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Proposition 1.3 should be viewed as an internal form of the extensionality principle.

Let (A, ↑segA) ∈ |Ord(E)|. we shall say that A is internally co-complete iff the internal

functor ↓segA : A → P (A) has a left adjoint, denoted supA : P (A) → A (if it exists). supA is

characterized by any of the two equivalent equations

i) supA◦ ↑segA =↑segP (A) ◦ P (↓segA)

ii) ↓segA ◦ P (supA) =↓segA◦ ↓segP (A)

as well as by the elementary description :

∀N ∈ |E| ∀M ∈ P (A) ∀a ∈ A :

(11) M ◦ supA 6 a iff M 6 a◦ ↓segA

Dually, (A, ↑segA) is said to be internally complete iff the contravariant internal functor

↑segA : A→ P (A) has an adjoint on the right, denoted infA : P (A)→ A (if it exists). Again,

infA is characterized by

i) infA◦ ↓segA =↑segP (A) ◦ P (↑segA)

ii) ↑segA◦ ↓segP (A) =↑segA ◦ P (infA)

and by the elementary description :

∀N ∈ |E| ∀M ∈ P (A) ∀a ∈ A :

(12) a 6M ◦ infA iff M 6 a◦ ↑segA

Let us finish this chapter with a few remarks on the functor

P : Eop −→ E.

As P = Ω( ) we know that P is adjoint to itself on the right.

If we consider P as a covariant functor we have that

(13) E
P−→ Eop a Eop P−→ E

under the natural isomorphism

HomE(B,P (A)) −→
∼

HomE(A,P (B))

which is induced by the natural isomorphism c and the cartesian twist.

The unity for this adjoint situation is wA : A → PP (A) which is defined by the following

rule:

∀N ∈ |E| ∀M ∈ P (A) ∀a ∈ A : M ∈ a ◦ wA iff a ∈ M
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i.e. wA = { }A◦ ↑segP (A) (the principal ultrafilters on A).

The monad on E generated by (13) is called the double dualization monad (with respect to

Ω) on E. Notice that the multiplication m is given by mA = P (wA).

Observe that w is pointwise monic. Indeed { }A is monic by the proof of Theorem 1.1, and

↑segP (A) is monic due to the antisymmetry of the canonical ordering on P (A).



Chapter 2

Internal Completeness in Elementary Topoi

In this chapter let E be a fixed elementary topos. In the first chapter we saw that the internal

power objects P (A) in E had the structure (P (A),∧P (A), ptrueAq,⇒P (A)) of a Heyting algebra

object, and that the internal substitution morphisms P (f) were internal functors. Our first

aim is to construct adjoints to these internal functors.

Proposition 2.1. Let f ∈ HomE(A,B) then the internal functor P (f) has a right adjoint ∀f
(the internal universal quantification along f).

∀f = P (A)
↓segP (A)

// PP (A)
PP (f)

// PP (B)
P ({ }B)

// P (B).

Proof. ∀f is an internal functor by construction, and

i) P (f) ◦ ∀f = P (f)◦ ↓ segP (A) ◦ PP (f) ◦ P ({ }B) >

↓ segP (B) ◦ P ({ }B) = idP (B) and

ii) ∀f ◦ P (f) =↓ segP (A) ◦ PP (f) ◦ P ({ }B) ◦ P (f) =

↓ segP (A) ◦ P (f ◦ { }B ◦ P (f)) 6↓ segP (A) ◦ P ({ }A) = idP (A).

This proves that P (f) a ∀f .

Elementary description of ∀f :

∀I ∈ |E| ∀N ∈ P (A) ∀b ∈ B : b ∈ N ◦ ∀f iff

∀J ∈ |E| ∀i ∈ I ∀a ∈ A : a ◦ f = i ◦ b implies a ∈ i ◦N

J A
a

//

I

J

OO

i

I B
b

// B

A

OO

f

I

P (A)

N

??
P (A) P (B)

∀f
//

Proof. b ∈ N ◦ ∀f iff b ◦ { }B 6 N ◦ ∀f iff b ◦ { }B ◦ P (f) 6 N .

13
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Corollary 2.1. E has a strict initial object ∅.

Proof. Consider the global section false : 1→ Ω defined by the following equation:

pfalseq = pidΩq ◦ ∀!Ω

We claim that false a !Ω. Now,

pfalseΩq = p!Ω ◦ falseq = pfalseq ◦ P (!Ω) =

pidΩq ◦ ∀!Ω ◦ P (!Ω) 6 pidΩq

and consequently false a !Ω.

Consider the following pull back diagram

∅ 1// //

1

∅

OO

OO

1 Ω//
false

// Ω

1

OO

true

OO

By the uniqueness theorem for adjoint internal functors we have that ∅ is the smallest

subobject of 1, and this implies that ∅ satisfies the uniqueness property of an initial object as

E has equalizers. Accordingly, the next diagram shows that ∅ is an initial object.

· X// //

1

·

OO

OO

1 P (X)//
ptrueXq// P (X)

X

OO

{ }X
OO

∅

1

??

??

∅ ·//

Finally, ∅ is a strict initial object as E is cartesian closed.

Corollary 2.2. If f ∈ HomE(A,B) then f is monic iff { }A = f ◦ { }B ◦ P (f) iff ∀f ◦ P (f) =

idP (A) iff P (f) is epic iff ∀f is monic.

Proof. This follows from ii) in the proof of Proposition 2.1.

Corollary 2.3. The assignment X 7−→ P (X), f 7−→ ∀f defines a functor (covariant and

faithful)

∀ : E −→ E

called internal universal quantification.

Proof. This follows from the uniqueness theorem for adjoint internal functors and the fact that

P is a faithful and contravariant functor.

In order to establish that P (f) has a left adjoint we need the fact that the internal power

objects are internally complete.
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Proposition 2.2. Let X ∈ |E| and let
⋂
X be the internal intersection on P (X) defined as

follows

⋂
X = PP (X)

↑segPP (X)
// PPP (X)

P (↑segP (X))
// PP (X)

P ({ }X)
// P (X)

then
⋂
X is a contravariant internal functor,

⋂
X ⊥↑segP (X) and furthermore { }P (X) ◦

⋂
X =

idP (X).

Proof.
⋂
X is a contravariant internal functor by construction, and

i) { }P (X) ◦
⋂
X = wP (X) ◦ P (wP (X)) = idP (X)

(i.e. the unite law for the double dualization monad on E)

ii) ↑ segP (X) ◦
⋂
X =↑segP (X)◦ ↑segPP (X) ◦ P (↑segP (X)) ◦ P ({ }X) =

↓segP (X) ◦ P ({ }X) = idP (X)

iii) ∀I ∈ |E| ∀N ∈ PP (X) ∀A ∈ P (X) :

A ∈ N iff

A ◦ { }P (X) 6 N implies

N ◦
⋂
X 6 A ◦ { }P (X) ◦

⋂
X = A iff

A ∈ N ◦
⋂
X ◦ ↑ segP (X).

I.e. idPP (X) 6
⋂
X ◦ ↑segP (X), whence

⋂
X ⊥ ↑segP (X).

Elementary description of
⋂
X :

∀I ∈ |E| ∀N ∈ PP (X) ∀x ∈ X : x ∈ N ◦
⋂
X iff

∀J ∈ |E| ∀i ∈ I ∀A ∈ P (X) : A ∈ i ◦N implies i ◦ x ∈ A.

J P (X)
A //J

I

i

OOI X
x

//I

PP (X)

N

88
PP (X) P (X)

⋂
X //

Proof. x ∈ N ◦
⋂
X iff x ◦ { }X 6 N ◦

⋂
X iff N 6 x ◦ { }X◦ ↑segP (X).

Proposition 2.3. Let f ∈ HomE(A,B) then the internal functor P (f) has a left adjoint ∃f
(the internal existential quantification along f).

∃f = P (A)
↑segP (A)

// PP (A)
PP (f)

// PP (B)

⋂
B // P (B)
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Proof. ∃f is an internal functor by construction, and

i) ∃f ◦ P (f) =↑segP (A) ◦ PP (f) ◦
⋂
B ◦P (f) =

↑segP (A) ◦ PP (f)◦ ↑segPP (B) ◦ P (wB) ◦ P (f) =

↑segP (A) ◦ PP (f)◦ ↑segPP (B) ◦ PPP (f) ◦ P (wA) >

↑segP (A)◦ ↑segPP (A) ◦ P (wA) =↑segP (A) ◦
⋂
A = idP (A)

ii) P (f) ◦ ∃f = P (f)◦ ↑segP (A) ◦ PP (f) ◦
⋂
B 6

↑segP (B) ◦
⋂
B = idP (B)

This proves that ∃f a P (f)

Corollary 2.4. E has epi-mono-factorization.

Proof. Let f ∈ HomE(A,B). If i : C � B is any monomorphism in E then f factors through

i iff f ◦ chB(i) = trueA iff ptrueAq 6 pchB(i)q ◦ P (f) iff ptrueAq ◦ ∃f 6 pchB(i)q.

Thus if we define the image of f by the equation

pchB(im(f))q = ptrueAq ◦ ∃f

we have that i = im(f)� B is the smallest subobject of B through which f factors. Also the

factorization

A

im(f)

f

�� ��

A B
f

// B

im(f)

??

i
??

the morphism f is epic as E has equalizers.

The above factorization is unique as E is balanced.

Corollary 2.5. If f ∈ HomE(A,B) then f is epic iff ptrueAq ◦ ∃f = ptrueBq iff P (f) ◦ ∃f =

idP (B) iff P (f) is monic iff ∃f is epic.

Corollary 2.6. The assignment X 7−→ P (X), f 7−→ ∃f defines a functor (covariant and

faithful)

∃ : E −→ E

called internal existential quantification, and

{ } = { { }X : X � P (X)}X∈|E| : idE =⇒ ∃

is a pointwise monic natural transformation.

Proof. As P is a contravariant functor it follows from the uniqueness theorem for adjoint

internal functors that ∃ is a well defined functor. If f ∈ HomE(A,B) then
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{ }A ◦ ∃f = { }A◦ ↑segP (A) ◦ PP (f) ◦
⋂
B = wA ◦ PP (f) ◦

⋂
B =

f ◦ wB ◦
⋂
B = f ◦ { }B◦ ↑segP (B) ◦

⋂
B = f ◦ { }A,

which proves that { } is a natural transformation, and as the values of { } are monic we know

that ∃ is a faithful functor.

Proposition 2.4. In E epimorphisms are preserved by pull backs.

Proof. Let f ∈ HomE(A,B) be epic and i ∈ HomE(C,B) be monic and consider the pull back

D C
g

//

A

D

OO

j

OO

A B
f

// // B

C

OO

i

OO

Now pchB(i)q = pchB(i)q ◦ P (f) ◦ ∃f = pf ◦ chB(i)q ◦ ∃f =

pchA(j)q ◦ ∃f = pchA(im(j))q ◦ ∃f = ptrueDq ◦ ∃j ◦ ∃f =

ptrueDq ◦ ∃j◦f = pchB(im(j ◦ f))q.

This proves that epimorphisms are preserved by pull backs along monomorphisms.

In order to obtain the proof in the general case we take h ∈ HomE(X,B) and consider the

pull back diagram

Y X
f

//

A

Y

OO

h

A B
f

// // B

X

OO

h

as well as the diagram

Y X
f

//

X ×A

Y

OO

〈f,h〉

OO

X ×A X ×B
idX×f // // X ×B

X

OO

Γh

OO

As f is epic we have that idX × f is epic as E is cartesian closed. And as the second square

is a pull back iff the first one is, and as Γh is mono (split) it follows from the first part of the

proof that f is an epimorphism.

This concludes the proof of Proposition 2.4

Elementary description of ∃f :

If f ∈ HomE(A,B) let us consider the “classical” construction of ∃f . For this clause only

let us use the notation I(f). We indicate the construction by the following diagram.
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M

P (A)×A

〈e◦K,a〉

33

M

N

e

BB BB
N

P (A)×B
〈K,b〉 33

P (A)×A

P (A)×B

idP (A)×f

BB

εA

P (A)×A

OO

OO

M

εA
))

εf

P (A)×B

OO

OO

N

εf
))

εA

εf
BB BB
εf 1//

P (A)×B

εf

OO

OO

P (A)×B Ω
Î(f)

// Ω

1

OO

true

OO

i.e. Î(f) classifies the image εf of εA along idP (A) × f .

The construction of I(f) is possible due to Corollary 2.4, and by Proposition 2.4 we know

that I(f) has the following elementary description:

∀N ∈ |E| ∀K ∈ P (A) ∀b ∈ B : b ∈ K ◦ I(f) iff

∃M ∈ |E| ∃e ∈ N (epi) ∃a ∈ A such that

a ◦ f = e ◦ b and a ∈ e ◦K

i) I(f) is an internal functor.

If N ∈ |E| K,L ∈ P (A) b ∈ B b ∈ K ◦ I(f) and K 6 L, then

∃M ∈ |E| ∃e ∈ N (epi) ∃a ∈ A such that a ◦ f = e ◦ b

and a ∈ e ◦K, but K 6 L, thus e ◦K 6 e ◦ L and so a ∈ e ◦ L

ii) idP (A) 6 I(f) ◦ P (f).

This follows from the defining diagram of I(f).

iii)

J A
a //

I

J

OOOO

e

I B
b // B

A

OO

f

I

P (B)

K

??
P (B) P (A)

P (f)
// P (A) P (B)

I(f)
//

Let I ∈ |E| K ∈ P (B) b ∈ B and assume that b ∈ K ◦ P (f) ◦ I(f).

Thus ∃J ∈ |E| ∃e ∈ I (epi) ∃a ∈ A such that a ◦ f = e ◦ b and

a ∈ e ◦K ◦ P (f), i.e. a ◦ f ∈ e ◦K.

But then e ◦ b ∈ e ◦K and so b ∈ K as e is epic.
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iv) Summing up we see that I(f) is an internal functor and that I(f) a P (f). It follows from

the uniqueness theorem for adjoint internal functors that I(f) = ∃f as we have that both

I(f) a P (f) and ∃f a P (f).

Thus the construction in Proposition 2.3 makes possible the “classical” construction of in-

ternal existential quantification and the two constructions agree. It follows that I(f) and ∃f
have the same elementary description.

Recall that in establishing the existence of ∃f we had to verify that the internal power ob-

jects were internally complete. This fact leads to a rapid development of the internal structure

of E.

Let C(E) be the category of internally complete ordered objects in E and inf-preserving

morphisms. If A and B are in C(E) and f ∈ HomE(A,B) then f is inf-preserving iff the

following diagram is commutative

A B
f

//

P (A)

A

infA

��

P (A) P (B)
∃f

// P (B)

B

infB

��

Notice that inf-preserving morphisms are automatically internal functors as

f =↑segA ◦ infA ◦ f =↑segA ◦ ∃f ◦ infB .

Dually, let C(E) be the category of internally co-complete ordered objects in E and sup-

preserving morphisms. Etc.

Proposition 2.5. Internally complete ordered objects are also internally co-complete. Explic-

itly, if A = (A, ↑segA, infA) is in C(E) then

supA = P (A)
∃↑segA // PP (A)

⋂
A // P (A)

infA //A

is an internal functor and supA a ↓segA.

Furthermore, idA = { }A ◦ supA.

Proof. supA is an internal functor by construction.

i) idA =↑segA ◦ infA =↑segA ◦ { }P (A) ◦
⋂
A ◦ infA =

{ }A ◦ ∃↑segA ◦
⋂
A ◦ infA = { }A ◦ supA 6 ↓segA ◦ supA =

↑segA◦ ↑segP (A) ◦ P (↑segA) ◦ ∃↑segA ◦
⋂
A ◦ infA 6

↑segA◦ ↑segP (A) ◦
⋂
A ◦ infA = ↑segA ◦ infA = idA

i.e. { }A ◦ supA =↓segA ◦ supA = idA.
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ii) As infA◦ ↓segA = ↑segP (A) ◦ P (↑segA) ⊥ ∃↑segA ◦
⋂
A we have that

supA◦ ↓segA = ∃↑segA ◦
⋂
A ◦ infA◦ ↓segA =

∃↑segA ◦
⋂
A ◦ ↑segP (A) ◦ P (↑segA) > idP (A)

This concludes the proof of Proposition 2.5

Proposition 2.6. A morphism f∗ : A //B between two internally complete ordered objects

is inf-preserving iff it is an internal functor having a left adjoint f∗. If f∗ is inf-preserving then

f∗ = B
↑segB // P (B)

P (f∗)
// P (A)

infA //A

and f∗ is sup-preserving.

Proof. If f∗ is inf-preserving then f∗ is an internal functor. As for f∗, as defined above, it is

an internal functor independently of the properties of f∗.

i) f∗ ◦ f∗ =↑segB ◦ P (f∗) ◦ infA ◦ f∗ =↑segB ◦ P (f∗) ◦ ∃f∗ ◦ infB >

↑segB ◦ infB = idB

ii) f∗ ◦ f∗ = f∗◦ ↑segB ◦ P (f∗) ◦ infA 6↑segA ◦ infA = idA,

as f∗ is an internal functor, whence f∗ a f∗.

Conversely, if f∗ is an internal functor having a left adjoint g : B //A, then g◦ ↑segA =

↑segB ◦ P (f∗), and as

∃f∗ ◦ infB ⊥↑segB ◦ P (f∗) and

infB ◦ f∗ ⊥ g◦ ↑segA

it follows from the uniqueness theorem for internal adjoint functors that

∃f∗ ◦ infB = infA ◦ f∗ and g = f∗.

Finally, if f∗ a f∗ then ↓segA ◦ P (f∗) = f∗◦ ↓segB and as

∃f∗ ◦ supA a ↓segA ◦ P (f∗) and

supB ◦ f∗ a f∗◦ ↓segB

it follows that ∃f∗ ◦ supA = supB ◦ f∗.
This concludes the proof of Proposition 2.6

Statement. The assignment

(A, ↑segA, infA) 7−→ (A, ↓segA, supA)

f∗ : A //B 7−→ f∗ : B //A,
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defines a contravariant functor

I : C(E) // C(E).

Corollaries.

Corollary 2.7. The internal power objects are internally co-complete.⋃
X : PP (X) // P (X) is given by⋃
X = ∃↑segP (X)

◦
⋂
P (X) ◦

⋂
X .

Corollary 2.8.

{ }P (X) ◦
⋃
X = idP (X).

Corollary 2.9.

As ∃{ }X ◦
⋃
X a↓segP (X) ◦ P ({ }X) = idP (X), we have that

∃{ }X ◦
⋃
X = idP (X).

Corollary 2.10. As
⋃
X a↓segP (X), we have that⋃

P (X) ◦
⋃
X = ∃⋃

X
◦
⋃
X .

Corollary 2.11. ∀f ∈ HomE(X,Y ) we have ∃f a P (f). It follows that

∃∃f ◦
⋃
Y =

⋃
X ◦∃f .

Let

E

= (∃, { },
⋃

). In this notation

E

is a monad on E.

E

is called the internal power

monad on E.

By dualizing the proofs of Proposition 2.5 and Proposition 2.6 we get

Proposition 2.5.∗ Internally co-complete ordered objects are internally complete. Explicitly,

if A = (↓segA, supA)is in C(E)then

infA = P (A)
∃↓segA // PP (A)

⋂
A // P (A)

supA //A

is a contravariant internal functor and infA ⊥ ↑segA, furthermore idA = { }A ◦ infA.

Proposition 2.6.∗ A morphism f∗ : B // A between two internally co-complete ordered

objects is sup-preserving iff it is an internal functor having a right adjoint f∗.If f∗ is sup-

preserving then

f∗ = A
↓segA // P (A)

P (f∗)
// P (B)

supB //B

and f∗ is inf-preserving.

Statement. The assignment
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(A, ↓segA, supA) 7−→ (A, ↑segA, infA)

f∗ : B //A 7−→ f∗ : A //B,

defines a contravariant functor

J : C(E) // C(E).

By the uniqueness theorem for adjoint internal functors we get that I and J are antiisomor-

phisms of categories and that J = I−1.

If (A, ↓segA, supA) ∈ |C(E)| then the adjunction supA a ↓segA implies that

⋃
A ◦supA = ∃supA ◦ supA and { }A ◦ supA = idA.

It follows that the assignment

J(A, ↓segA, supA) = (A, supA) and J(f∗) = f∗

defines a covariant functor J from C(E) to E

E

, the category of algebras for the internal power

monad on E.

Proposition 2.7. If (A, s) ∈ |E

E

| then

↓seg(s) = A
{ }A

// P (A)
P (s)

// PP (A)

⋃
A // P (A)

defines an internal order on A. Furthermore, s is an internal functor with respect to this

ordering and s a ↓seg(s).

Proof. By assumption we have commutativity of

A P (A)
{ }A

//A

A

idA

��

P (A)

A

s

��

P (A) A
s //

PP (A)

P (A)

⋃
A

��

PP (A) P (A)
∃s // P (A)

A

s

��

1) ↓seg(s) ◦ s = { }A ◦ P (s) ◦
⋃
A ◦ s = { }A ◦ P (s) ◦ ∃s ◦ s = { }A ◦ s = idA.

In particular ↓seg(s) is monic and ∃↓seg(s) 6 P (s)

2) s ◦ ↓seg(s) = s ◦ { }A ◦ P (s) ◦
⋃
A = { }P (A) ◦ ∃s ◦ P (s) ◦

⋃
A >

{ }P (A) ◦
⋃
A = idP (A)

3) { }A = { }A ◦ ∃{ }A ◦
⋃
A 6 { }A ◦ P (s) ◦

⋃
A =↓seg(s),

as ∃{ }A 6 P (s) follows from { }A ◦ s = idA.

4) ↓segA ◦ ∃↓segs ◦
⋃
A =↓seg(s) ◦ P (s) ◦

⋃
A 6

↓seg(s) ◦ P (s) ◦
⋃
A ◦ s ◦ ↓seg(s) =↓seg(s) ◦ P (s) ◦ ∃s ◦ s ◦ ↓seg(s) =

↓seg(s) ◦ s ◦ ↓seg(s) =↓seg(s). It follows that
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4.1) ↓seg(s) ◦ P (s) 6 ↓seg(s)◦ ↓segP (A) and

4.2) ↓seg(s) 6 ↓seg(s)◦ ↓segP (A) ◦ P (↓seg(s)).

5) By 1), 3) and 4.2) we have that ↓seg(s) is an internal ordering on A.

6) If (B, ↓segB , supB) ∈ |C(E)| then ↓segB = { }B ◦ P (supB) ◦
⋃
B .

Indeed, ↓segB =↓segB ◦ { }P (B) ◦
⋃
B = { }B ◦ ∃↓segB ◦

⋃
B 6

{ }B ◦ P (supB) ◦
⋃
B 6↓segB ◦ P (supB) ◦

⋃
B =↓segB .

Notice that ∃↓segB 6 P (supB) follows from ↓segB ◦ supB = idB . The last equality follows from

supB a↓segB via Proposition 2.6∗. In particular we have

↓segP (A) = { }P (A) ◦ P (
⋃
A) ◦

⋃
P (A).

Finally, as { }A ◦ P (s) ◦ P (∃s) ◦
⋃
P (A) ◦ ∃s =

{ }A ◦ P (s) ◦ P (∃s) ◦ ∃∃s ◦
⋃
A 6 { }A ◦ P (s) ◦

⋃
A = ↓seg(s)

it follows that

↓seg(s)◦ ↓segP (A) =↓seg(s) ◦ { }P (A) ◦ P (
⋃
A) ◦

⋃
P (A) =

{ }A ◦ ∃↓seg(s) ◦ P (
⋃
A) ◦

⋃
P (A) 6 { }A ◦ P (s) ◦ P (

⋃
A) ◦

⋃
P (A) =

{ }A ◦ P (
⋃
A ◦ s) ◦

⋃
P (A) = { }A ◦ P (∃s ◦ s) ◦

⋃
P (A) =

{ }A ◦ P (s) ◦ P (∃s) ◦
⋃
P (A) 6↓seg(s) ◦ P (s).

7) From 4.1) and 6) we have that ↓seg(s) ◦ P (s) = ↓seg(s)◦ ↓segP (A).

It follows that s is an internal functor and that s is the left adjoint of ↓seg(s).

This concludes the proof of Proposition 2.7.

From Proposition 2.7 we get that the assignment

I(A, s) = (A, ↓seg(s), s) and I(f) = f

defines a covariant functor I from E

E

to C(E), and that the composite J ◦ I = id
E

E. From

the proof, 6), of the proposition it follows that I ◦ J = idC(E).

As a consequence we have for an elementary topos E the theorem which in the case E = Sets

was first established by E. Manes [18].

Theorem 2.1. The category C(E) of internally co-complete ordered objects and sup-preserving

morphisms is tripleable over E and isomorphic to the Eilenberg-Moore category E

E

for the

internal power monad on E. Also, it is antiisomorphic to C(E), the category of internally

complete ordered objects and inf-preserving morphisms.
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The standard argument that E

E

has finite inverse limits can also be applied to the forgetful

functor

C(E) //E

and consequently we have that C(E) has finite inverse limits and finite direct limits as well.

Given a finite diagram D in C(E), pass to C(E) and compute its inverse limit (as in E) and

return to C(E). The result is the direct limit in C(E) of D.

In particular C(E) has finite bi-products (the cartesian product) and a zero object (1).

Notice that the diagonal as well as the terminal morphism on any object in C(E) are both

inf- and sup-preserving. It follows that any (A, ↓segA, supA) ∈ |C(E)| is a bounded lattice

object in E. In particular we rediscover the already established fact that the internal power

objects are upper semilattices in E.

Due to Theorem 2.1 the objects C(E), C(E) and E

E

will simply be called complete lattices

(in E).

Theorem 2.2. Let A be a complete lattice in E and let f : A −→ A be an internal endofunctor

on A, then f has a smallest fixpoint (defined over 1).

Proof. Consider the following diagram

P (F ) F

P (A)

P (F )

OO

∃i

OO

P (A) A
infA // A

F

OO

i

OO

F

A

F

A A×A
<f,idA> // A×A

1

A×AA×A Ω
↑ŝegA // Ω

1

OO

true

OO

F 1//

P.B.

If a : N −→ A is any element in A then a factors through F iff a ◦ f 6 a. In particular

i ◦ f 6 i. But i ◦ f 6 i iff ↑segA ◦ P (i ◦ f) 6↑segA ◦ P (i) iff ∃i◦f ◦ infA 6 ∃i ◦ infA, and as

infA ◦ f 6 ∃i ◦ infA as f is an internal functor, it follows that

∃i ◦ infA ◦ f 6 ∃i ◦ ∃f ◦ infA = ∃i◦f ◦ infA 6 ∃i ◦ infA,

and so there exists a uniquely determined morphism

infF : P (F ) −→ F

such that

∃i ◦ infA = infF ◦ i.

It follows that (F, ↑segF = i◦ ↑segA ◦P (i), infF ) ∈ |C(E)|, and that i is a C(E)-morphism.

In particular

a = ptrueF q ◦ ∃i ◦ infA = ptrueF q ◦ infF ◦ i

is the smallest global section in F .

Now a ◦ f 6 a, and as f is an internal functor a ◦ f ◦ f 6 a ◦ f . Thus a ◦ f factors through

F and so a 6 a ◦ f . It follows that a ◦ f = a.

If b : N −→ A is any fixpoint for f , b ◦ f = b, then b ◦ f 6 b and so b factors through F .

Again !N ◦ a 6 b by the minimality of a.

This concludes the proof of Theorem 2.2.
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Remark. In the category of sets Theorem 2.2 is known as Tarski’s Fixpoint Theorem, [25]. In

the case A = P (X) it was first published by Knaster [11] as the result of joint work of Knaster

and Tarski, but it is easy to trace the theorem through Zermelo to Dedekind [2]. E.g. the

following proposition goes back to Was sind und was sollen die Zahlen. The number 5.41

refers to Aspects of Topoi where the proposition was established by Freyd by another method.

Proposition 5.41. Given x : 1 −→ X and t : X −→ X in an elementary topos E then

there exists a subobject

i : Y � X

such that im(i ◦ t) ∨ x = Y .

Proof. Apply the fixpoint theorem in the case A = P (X) and f = 〈∃t, !P (X) ◦ x ◦ { }X〉 ◦ ∨P (X).

Actually, we get a smallest solution of the problem.

The original reason for establishing the fixpoint theorem for elementary topoi was to verify

the following

Proposition 2.8. Elementary topoi have coequalizers.

Proof. First we notice that equivalence relations have coequalizers.

R X
p0 //

R X
p1

//

A P (A)
{ }A

//

X

A

f

��

X P (X)
↑segR // P (X)

P (A)

∃f

��

X

Q
q (( ((

Q

P (X)

77

m
77

Let 〈p0, p1〉 : R // //X×X be an equivalence relation in E and let ↑segR be the exponential

adjoint of chX×X(R). As R is an equivalence relation we conclude that ∀M ∈ |E| ∀x, y ∈ X :

x ◦ ↑segR = y ◦ ↑segR iff xRy In particular we have that : p0 ◦ ↑segR = p1 ◦ ↑segR.

Let q◦m =↑segR be the epi-mono-factorization of ↑segR (which exists in E by Corollary 2.4),

then p0 ◦ q = p1 ◦ q and 〈p0, p1〉 is the kernel-pair of q.

We claim that q is the coequalizer of p0 and p1.

Let f ∈ HomE(X,A) be a morphism in E such that p0◦f = p1◦f . Then ↑segR◦∃f = f◦{ }A.

Indeed, { }A 6↑segR as R is reflexive, and so f ◦ { }A = { }X ◦ ∃f 6↑segR ◦ ∃f .

Now ↑segR ◦ ∃f 6 f ◦ { }A iff ↑segR 6 f ◦ { }A ◦ P (f). But the latter inequality is the

assumption on f . It follows that ↑segR ◦ ∃f = f ◦ { }A.

X A
f

//

P (X)

X

OO

↑segR

P (X) P (A)
∃f

// P (A)

A

OO

{ }A

OO

A 1//

P (A)

A

OO

{ }A

OO

P (A) Ω
sA // Ω

1

OO

true

OO

X

Q
q << <<

Q

P (X)

bb

mbb

Q

A

f

))
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Now q ◦ m ◦ ∃f ◦ sA =↑segR ◦ ∃f ◦ sA = f ◦ { }A ◦ sA = trueX = q ◦ trueQ, it follows

that m ◦ ∃f ◦ sA = trueQ as q is epic. Thus there exists a factorization f : Q −→ A such that

f ◦ { }A = m ◦ ∃f , and as { }A is monic it follows that q ◦ f = f . As q is epic we see that

q = eq(p0, p1).

This proves that equivalence relations have coequalizers.

As for the general case let f, g ∈ HomE(Y,X). Now, provided we can construct the smallest

equivalence relation R on X which contains the image of 〈f, g〉, it follows from the above and

from the fact any kernel-pair is an equivalence relation that the coequalizer of f and g exists

and equals the coequalizer of R.

Y im(〈f, g〉)// // im(〈f, g〉) R// //

X ×X

Y

??

〈f,g〉

X ×X

im(〈f, g〉)

OO

OO

X ×X

R

__

__

Consider the following internal functors on P (X ×X):

f1 = “Adjoining the image of 〈f, g〉”

= 〈idP (X×X), !P (X×X) ◦ pch(im(〈f, g〉))q〉 ◦ ∨P (X×X)

f2 = “Adjoining the diagonal on X”

= 〈idP (X×X), !P (X×X) ◦ pδXq〉 ◦ ∨P (X×X)

f3 = “Taking the inverse of the relation” = ∃twX,X

f4 = “Taking the square of a relation”

= ∆P (X×X) ◦©X,X,X z

and let g1 = f1, gn+1 = 〈gn, fn+1〉 ◦ ∨P (X×X) for n = 1, 2, 3, then the fixpoints of g4 (over 1)

are exactly the equivalence relations on X containing the image of 〈f, g〉, and by the fixpoint

theorem there exists a smallest such fixpoint.

This concludes the proof of Proposition 2.8

z

Using the epi-mono-factorization we have composition of relations in E. This construction

is internalized as follows:

P (A×B × C)× P (A×B × C) P (A×B × C)
∧P (A×B×C)

//

P (A×B)× P (B × C)

P (A×B × C)× P (A×B × C)

P (p0,1)×P (p1,2)

��

P (A×B)× P (B × C) P (A× C)
©A,B,C

// P (A× C)

P (A×B × C)

OO

∃p0,2

Observe that from the proof of Proposition 2.8 it follows that epimorphisms are coequalizers

(of their kernel-pairs).
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Proposition 2.9. Elementary topoi have finite coproducts.

Proof. Let X,Y ∈ |E| and let iX,Y : X + Y // // P (X)× P (Y ) be the smallest subobject of

P (X)× P (Y ) containing the two subobjects 〈{ }X , !X ◦ pfalseY q〉 and 〈!Y ◦ pfalseXq, { }Y 〉

X X + Y//
eX
// X + Y Yoo

eY
oo

P (X)× P (Y )

X

??

〈{ }X ,!X◦pfalseY q〉

??

P (X)× P (Y )

X + Y

OO

iX,Y

OO

P (X)× P (Y )

Y

__

〈!Y ◦pfalseXq,{ }Y 〉

__

If ch(X) and ch(Y ) denote the characters of these subobjects then

chP (X)×P (X)(iX,Y ) = 〈ch(X), ch(Y )〉 ◦ ∨.

It follows from the defining property of iX,Y that the two morphisms eX and eY are joint

epi, as E has equalizers.

Let f ∈ HomE(X,Z) and g ∈ HomE(Y,Z) and consider the following diagram.

X Z
f

//

P (X)× P (Y )

X

OO

〈{ }X ,!X◦pfalseY q〉

OO

P (X)× P (Y ) P (Z)× P (Z)
∃f×∃g

// P (Z)× P (Z)

Z

OO

〈{ }Z ,!Z◦pfalseZq〉

OO

P (Z)× P (Z) P (Z)
∨P (Z)

//

Z

P (Z)

77

{ }Z

77

Now pfalseZq is the smallest global section in P (Z) and therefore the triangle is commuta-

tive. The square is commutative as ∃g a P (g) and as { } is natural. It follows that the inverse

image of { }Z along ∃f × ∃g ◦ ∨P (Z) contains 〈{ }X , !X ◦ pfalseY q〉. Dually, it also contains

the subobject 〈!Y ◦ pfalseXq, { }Y 〉, and therefore it contains the smallest subobject with this

property. I.e. there exists a morphism

(
f

g
) : X + Y // Z

such that iX,Y ◦ (∃f × ∃g) ◦ ∨P (X) = ( fg ) ◦ { }Z . It follows that

X + Y Z( fg ) //X + Y

Y

OO

eY

OO

X

X + Y

��

eX

��

X

Z

f

��

Z

Y

??

g

is commutative. This means that

X X + Y//
eX

// X + Y Yoo
eY

oo

is a coproduct in E as eX and eY are joint epi.

This concludes the proof of Proposition 2.9.
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Remark.It follows from the above construction that coproducts in an elementary topos are

disjoint.

Theorem 2.3. Elementary topoi have finite colimits.

Proof. This is the content of Corollary 2.1, Proposition 2.8 and Proposition 2.9.

Remark. Due to Theorem 1.1 and Theorem 2.3 we now know that the definition of an

elementary topos given in this work agrees with the original one [5]. In cases where we want to

establish that a certain category is an elementary topos Theorem 2.3 will reduce the amount

of work required for performing the proof. A typical example is given in [9].

One of the most frequently quoted properties of elementary topoi is that they satisfies the

Beck condition for pull backs. We shall use this property several times in the following internal

form.

Consider the following diagram

C P (K)

I

C

c

��

I P (A)
M // P (A)

P (K)

P (g)

��

P (K) P (C)
∃f

//

P (A)

P (K)

P (A) P (B)
∃f

// P (B)

P (C)

P (g)

��

A B
f

//

K

A

g

��

K C
f

// C

B

g

��

J I
e // //J

K

k

��

J

A

a

��

1

2

If g ◦ f = f ◦ g then P (f) ◦P (g) = P (g) ◦P (f) and therefore P (g) ◦ ∃f 6 ∃f ◦P (g). In this

notation we have the following

Proposition 2.10. If the diagram 1 is a pull back then the diagram 2 is commutative.

Proof. Let I ∈ E, M ∈ P (A) and c ∈ C such that c ∈ M ◦ ∃f ◦ P (g). We claim that

c ∈ M ◦ P (g) ◦ ∃f .

By the assumption we have that c ◦ g ∈ M ◦ ∃f . Thus ∃J ∈ |E|, ∃e ∈ I (epi), ∃a ∈ A

such that a ∈ e ◦M and e ◦ c ◦ g = a ◦ f . As 1 is a pull back there exists k ∈ HomE(J,K)

such that k ◦ g = a and k ◦ f = e ◦ c, and as k ◦ g = a ∈ e ◦M and e is epic, this proves that

c ∈ M ◦ P (g) ◦ ∃f .

Remarks.

1). Notice that the above proof did not depend on the uniqueness of k.

2). From P (g) ◦ ∃f = ∃f ◦ P (g) we derive P (f) ◦ ∀g = ∀g ◦ P (f) by uniqueness of adjoints of

internal functors.

3). In any regular category pulling back along an epimorphism reflects monics. In the above

notation this means that if g is epic and f is monic and 1 is a pull back then f is a

monomorphism.
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As elementary topoi are regular categories, it follows that they have this property and the

proof from the regular case applies. We have, however, the following concise proof.

As P (g) ◦ ∃f = ∃f ◦ P (g) and as g is epic and f is monic we have that P (g) and ∃f are

monic. Thus ∃f is monic, and therefore f is also a monomorphism.

Most categorical properties of elementary topoi reflect themselves internally. For example,

the following proposition is the internal version of the fact that the cartesian product of two

epimorphisms is an epimorphism (cf. Theorem 1.1).

Proposition 2.11. p̃ = {p̃A,B : P (A) × P (B) // P (A × B)}(A,B)∈|E|×|E| is a natural

transformation with respect to ∃.

Proof. p̃A,B was defined in Chapter 1, (8). The statement of the proposition means that all

diagrams of the form

P (A)× P (B) P (A×B)
p̃A,B

//

P (X)× P (Y )

P (A)× P (B)

OO

∃f×∃g

P (X)× P (Y ) P (X × Y )
p̃X,Y

// P (X × Y )

P (A×B)

OO

∃f×g

are commutative.

We shall give a detailed proof of this fact by means of the elementary descriptions involved,

and it may serve as a prototype of this kind of proof.

J A×B
〈a,b〉

//

I

J

OOOO

e

I X × Y
〈x,y〉

// X × Y

A×B

OO

f×g

I

P (A)× P (B)

〈R,S〉

99

∀I ∈ |E| ∀R ∈ P (A) ∀S ∈ P (B) ∀x ∈ X ∀y ∈ Y :

〈x, y〉 ∈ 〈R,S〉 ◦ p̃A,B ◦ ∃f×g iff

∃J ∈ |E| ∃e ∈ I (epi) ∃a ∈ A ∃b ∈ B such that

a ∈ e ◦R, b ∈ e ◦ S, a ◦ f = e ◦ x and b ◦ g = e ◦ y.
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I Y
y

//

P (A)× P (B)

I

OO

〈R,S〉

P (A)× P (B)

YX Ioo x
X

P (A)× P (B)P (A)× P (B)

I

OO

〈R,S〉

J0

I
e0

?? ??

J1

I
e1

____

J2

J0

q0

____

J2

J1

q1

?? ??
P.B. J1 B

b0 //J0A
a0oo

∀I ∈ |E| ∀R ∈ P (A) ∀S ∈ P (B) ∀x ∈ X ∀y ∈ Y :

〈x, y〉 ∈ 〈R,S〉 ◦ ∃f × ∃g ◦ p̃X,Y iff

∃J0 ∈ |E| ∃e0 ∈ I (epi) ∃a0 ∈ A such that

a0 ∈ e0 ◦R and a0 ◦ f = e0 ◦ x and

∃J1 ∈ |E| ∃e1 ∈ I (epi) ∃b0 ∈ B such that

b0 ∈ e1 ◦ S and b0 ◦ g = e1 ◦ y.

By taking J0 = J1 = J , e0 = e1 = e, a0 = a and b0 = b, it follows that

p̃A,B ◦ ∃f×g 6 ∃f × ∃g ◦ p̃X,Y

We can prove the other inequality as follows. By Proposition 2.4 the two morphisms q0 and

q1 in the indicated pull back are epics. Thus by taking J = J2, e = q0 ◦e0 = (q1 ◦e1), a = q0 ◦a0

and b = q1 ◦ b1, it follows that

p̃A,B ◦ ∃f×g > ∃f × ∃g ◦ p̃X,Y

This concludes the proof of Proposition 2.11.

Recall the notion of internal bi-functors that admit an exponential. (The concept was

described in Chapter 1, (9)

Lemma 2.1. Let A, B, C, A0, B0 and C0 be internally ordered objects, let

� : A×B // C

be an internal bi-functor which admit an exponential

→: Bop × C //A,

and let g : B0
//B be an internal functor and

A0 A

f∗
//

A0 Aoo
f∗

C C0

h∗ //

C C0oo
h∗

and

be a pair of adjoint internal functors, f∗ a f∗ and h∗ a h∗, then
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A0 ×B0
f∗×g

//A×B � // C
h∗ // C0 expo

B0 × C0
g×h∗ //B × C → //A

f∗ //A0

Proof. ∀N ∈ |E| ∀a ∈ A0 ∀b ∈ B0 ∀c ∈ C0 :

(a ◦ f∗ � b ◦ g) ◦ h∗ 6 c iff a ◦ f∗ � b ◦ g 6 c ◦ h∗ iff

a ◦ f∗ 6 b ◦ g → c ◦ h∗ iff a 6 ( b ◦ g → c ◦ h∗) ◦ f∗

Let

• : X × Y // Z

be any (binary) morphism in E, and let

• : P (X)× P (Y ) // P (Z)

be the morphism

• = p̃X,Y ◦ ∃• = P (p0)× P (p1) ◦ ∧P (X×Y ) ◦ ∃•.

By Lemma 2.1 the induces multiplication • admits an exponential

−→• = P (p1)× P (•)◦ ⇒P (X×Y ) ◦∀p0

By the above construction we have the following elementary description of • and −→• :

J X × Y
〈x,y〉

//

I

J

OOOO

e

I Z
z

// Z

X × Y

I

P (X)× P (Y )

〈A,B〉

77
P (X)× P (Y ) P (Z)

•
//

∀I ∈ |E| ∀A ∈ P (X) ∀B ∈ P (Y ) ∀z ∈ Z : z ∈ A•B iff

∃J ∈ |E| ∃e ∈ I (epi) ∃x ∈ X ∃y ∈ Y such that

x ∈ e ◦A, y ∈ e ◦B and x • y = e ◦ z.

J Y
y

//

I

J

OO

i

I X
x

// X

Y

I

P (Y )× P (Z)

〈B,C〉

77
P (Y )× P (Z) P (X)

−→• //
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∀I ∈ |E| ∀B ∈ P (Y ) ∀C ∈ P (Z) ∀x ∈ X : x ∈ B−→• C iff

∀J ∈ |E| ∀y ∈ Y : y ∈ i ◦B implies (i ◦ x) • y ∈ i ◦ C.

Proposition 2.12. Let A, B and C be complete lattices in E and let • : A × B // C be an

internal bi-functor. Then • admits an exponential → iff the following diagram commutes

A×B

P (A)×B

A×B

supA×idB

��

P (A)×B P (A)× P (B)
idP (A)×{ }B

// P (A)× P (B)

C

P (A)× P (B)P (A)× P (B) P (C)
•
// P (C)

C

supC

��

A×B C
• //

Furthermore, if the square is commutative, then → is given by

→ = B × C
{ }B×↓segC

// P (B)× P (C)
−→• // P (A)

supA //A.

The proof of Proposition 2.12 is left to the reader. It is - using the elementary description

of • and −→• - a direct translation from the classical proof in Sets.

Corollary 2.12. Let A be a complete lattice in E and let • : A × A // A be an internal

symmetric bi-functor, then • admits an exponential → iff the following diagram commutes.

A×A A
• //

P (A)× P (A)

A×A

supA×supA

��

P (A)× P (A) P (A)
•

// P (A)

A

supA

��

Observe that in the case • = ∧A then the Corollary 2.12 is the well known criterion for A

to be a complete Heyting algebra (object in E).

In the below theorem let p0 = ptrueq = { }1 : 1 −→ P (1).

Theorem 2.4.

E

= ((∃, p̃, p0), { },
⋃

) is a symmetric monoidal monad on E

Proof. We have seen that p̃ is a natural transformation. Notice that all cases of p̃ have a left

adjoint k

kA,B : P (A×B)
〈∃p0

,∃p1
〉
// P (A)× P (B),

kA,B a p̃A,B . Applying k we easily get that (∃, p̃, p0) is a monoidal functor.

To say that { } : idE ⇒ ∃ is a monoidal transformation means that

1 1//1

P (1)

p0

��

1

P (1)

{ }1

��
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is commutative and that all cases of

P (A)× P (B) P (A×B)
p̃A,B

//

A×B

P (A)× P (B)

{ }A×{ }B

��

A×B

P (A×B)

{ }A×B

''

are commutative, - which clearly is the case.

To say that
⋃

: ∃ ◦ ∃ ⇒ ∃ is a monoidal transformation means that

P (1) PP (1)
∃p0

//P (1)

P (1)

PP (1)

P (1)

⋃
1

��

1 P (1)
p0

//1

P (1)

p0

**

commutes, and that all cases of the following diagram are commutative.

P (A)× P (B)

PP (A)× PP (B)

P (A)× P (B)

⋃
A×

⋃
B

��

PP (A)× PP (B) P (P (A)× P (B))
p̃P (A),P (B)

// P (P (A)× P (B))

P (A×B)

P (P (A)× P (B))P (P (A)× P (B)) PP (A×B)
∃p̃A,B

// PP (A×B)

P (A×B)

⋃
A×B

��

P (A)× P (B) P (A×B)
p̃A,B

//

The triangle is commutative as ∃{ }1 ◦
⋃

1 = idP (1) and the square s commutative by the

Corollary 2.12 as the internal bi-functor p̃A,B admits an exponential.

Finally, p̃ is symmetric as the binary internal intersection on internal power objects is

symmetric.

This concludes the proof of Theorem 2.4

From the general theory of monoidal functors (and monads), [7], we get that

E

has a

cotensorial strength

λX,Y : P (XY ) −→ P (Y )X

which is given by its exponential adjoint, namely

idP (XY ) × { }X ◦ p̃Y X ,X ◦ ∃evX,Y : P (Y X)×X −→ P (Y ).

Combining this with the fact that the functors ( )X on E are left exact yields the proof of

the following

Proposition 2.13. The functor ( )X preserves complete lattices in E. Explicitly, if A is a

complete lattice in E, then AX is a complete lattice under the pointwise ordering, i.e.

P (AX)
λX,A

// P (A)
X (supA)X

//AX

is the internal sup on AX . Dually for inf. Furthermore, if f ∈ HomE(X,Y ) then Af is sup-

and inf-preserving and preserves all finitary operations existing on A.
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We shall now establish a number of properties of internal functors on Heyting algebras in

E. Most of then have most certainly occurred in articles of mathematics but at least one of

them, explaining why f−1 of an open continuous function on topological spaces must preserve

the formation of implication of open sets, seems to be new.

Proposition 2.14 (The Frobenius Reciprocity, [14]). Let

A B

f
//

A Boo
g

, f a g

be a pair of internal adjoint functors on Heyting algebras in E, then the following statements

are equivalent.

1) f preserves ↓-segments.

2) (f, g) satisfies the Frobenius Reciprocity Law.

3) g preserves implication.

In case the internal functor g has a right adjoint h, each of these conditions is equivalent to

4) (f, g, h) is a Stone morphism.

Proof. Consider the following diagrams.

A B
f

//

P (A)

A

OO

↓segA

P (A) P (B)
∃f

// P (B)

B

OO

↓segB>

(1)

A B
f

//

A×A

A

∧

��

A×A B ×BB ×B

B

∧

��

A×B

A×A

idA×g

yy

A×B

B ×B

f×idB
%%

6

(2)

B A
g

//

B ×B

B

→

��

B ×B A×A
g×g

// A×A

A

→

��

6

(3)

A B
h //

A×A

A

→

��

A×A B ×BB ×B

B

→

��

A×B

A×A

idA×g

yy

A×B

B ×B

f×idB
%%

>

(4)
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The indicated inequalities are valid and may easily be derived from the general rules of

adjointness of internal functors. The exact meaning of condition n) is that the diagram (n)

commutes.

1)⇒ 2). Let I ∈ |E|, a ∈ A and b ∈ B, then (a∧ b ◦ g) ◦ f 6 a ◦ f ∧ b 6 a ◦ f . From the last

inequality we have that

a ◦ f ∧ b ∈ a ◦ f◦ ↓segB = a ◦ ↓segA ◦ ∃f ,

and therefore ∃ J ∈ |E| ∃ e ∈ I(epi) ∃ x ∈ A such that x 6 e ◦ a and x ◦ f = e ◦ a ◦ f ∧ e ◦ b.
As x ◦ f 6 e ◦ b we have x 6 e ◦ b ◦ g and so x ◦ f = (e ◦ a ∧ x) ◦ f 6 (e ◦ a ∧ e ◦ b ◦ g) ◦ f 6

e ◦ a ◦ f ∧ e ◦ b = x ◦ f , it follows that we have (e ◦ a∧ e ◦ b ◦ g) ◦ f = e ◦ a ◦ f ∧ e ◦ b, and as e is

epic we finally get that (a ∧ b ◦ g) ◦ f = a ◦ f ∧ b.

2)⇒ 1).Let I ∈ |E|, a ∈ A and b ∈ B such that b ∈ a ◦ f◦ ↓segB , i.e. such that b 6 a ◦ f .

By 2) we get that b = a ◦ f ∧ b = (a∧ b ◦ g) ◦ f and therefore b ∈ a ◦ ↓segA ◦ ∃f as a∧ b ◦ g 6 a.

2 ⇐⇒ 3) ⇐⇒ 4) is a corollary of Lemma 2.1.

Corollary 2.13. Let (A,B, f, g) be as in Proposition 2.14. If f is monic and g preserves

implication, then f preserves binary intersection.

Proof. As f is monic we have that idA = f ◦ g, and the statement follows from sticking idA× f
on top of the commutative pentagon (2).

Proposition 2.15. Let (A,B, f, g) be as in Proposition 2.14, then f is epic iff g ◦ f = idB iff

f preserves ↑-segments, i.e. f◦ ↑segB = ↑segA ◦ ∃f . In case g preserves implication we have

that f is epic iff f preserves the greatest global section.

Proof. f is epic iff g ◦ f = idB follows from f = f ◦ g ◦ f . If g ◦ f = idB then f◦ ↑segB =

↑segA ◦ P (g) =↑segA ◦ P (g) ◦ ∃g ◦ ∃f 6↑segA ◦ ∃f 6 f◦ ↑segB , i.e. f◦ ↑segB =↑segA ◦ ∃f .

Conversely, assume that f preserves ↑-segments. If I ∈ |E| and b ∈ B then as b ◦ g ◦ f 6 b

there is J ∈ |E| and ∃e ∈ I (e is epic) ∃a ∈ A such that e ◦ b = a ◦ f 6 e ◦ b ◦ g ◦ f 6 e ◦ b. It

follows that e ◦ b = e ◦ b ◦ g ◦ f and as e is epic we see that b = b ◦ g ◦ f , i.e. g ◦ f = idB .

The last statement follows from Proposition 2.14, 2) and the fact that g preserves the

greatest global section as f a g.

Proposition 2.16. Let (A,B, f, g) be as in Proposition 2.14, then f preserves binary inter-

section iff

A B
g

//

B ×B

A

→

��

B ×B A×AA×A

B

→

��

A×B

B ×B

f×idB
yy

A×B

A×A

idA×g

%%

commutes.
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Proof. Apply Lemma 2.1.

Corollary 2.14. Let (A,B, f, g) be as in Proposition 2.14. If f is left exact then g preserves

implication iff g is monic.

Proof. If idB = g ◦ f then g must preserve implication as proved by sticking g × idB on top of

the commutative pentagon in Proposition 2.16.

Conversely, f preserves and g reflects the greatest global section, whence if g preserves

implication it follows that g reflects the order relation and therefore g is monic.

Let (H,∧, e,→) be a Heyting algebra in E and let α∗ = chH(e) : H // Ω, then we

readily see that α∗ is left exact.

If α∗ is a left adjoint of α∗ then α∗ preserves the greatest global section, i.e. true ◦ α∗ = e,

and as ↑ ŝegH =→ ◦ α∗ it follows that

∀I ∈ |E| ∀n ∈ Ω ∀x ∈ H : (n ◦ α∗ → x) ◦ α∗ = n⇒ x ◦ α∗,

as this condition is equivalent with α∗ a α∗, but according to Proposition 2.16 this means that

α∗ preserves binary intersection.

If H is a complete Heyting algebra then as α∗ =↓segH ◦ P (e) it follows that in this case α∗

exists and equals ∃e ◦ supH .

Let us shortly investigate some of the consequences of the last group of propositions on the

morphisms on the internal power objects in E.

If f ∈ HomE(X,Y ) then by Proposition 2.14, 1) we have that

s) ∃f◦ ↓segP (Y ) =↓segP (X) ◦ ∃∃f

If f is monic then ∃f is also monic, and therefore if we evaluate s) on ptrueXq we find that

st) pchY (f)q◦ ↓segP (Y ) = pchP (Y )(∃f )q

which states that ↓seg is a “strength” for ∃.
In the same way Proposition 2.14, 2) and Proposition 2.14, 3) contain well known informa-

tion. From Proposition 2.14, 4) we see that “universal quantification along f preserves false

iff the image of f is double negation dense in Y ”.

If F : P (A) −→ P (B) is sup-preserving, i.e.
⋃
A ◦F = ∃F ◦

⋃
B , then as F = ∃{ }A◦F ◦

⋃
B ,

it follows that F = P (a) ◦ ∃b where 〈a, b〉 : R −→ A × B is the relation from A to B which is

determined by ↑segR = { }A ◦ F .

s1) ptrueAq ◦ F = ptrueAq ◦ P (a) ◦ ∃b = ptrueRq ◦ ∃b = pchB(im(b))q.

It follows that ptrueAq ◦ F = ptrueBq iff b is epic.

s2) If b is monic then ∃b is monic and by Corollary 2.13 ∃b preserves binary intersection. It

follows that F preserves binary intersection.
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Conversely, assume that F preserves binary intersection, and let x, y ∈ HomE(I,R) be two

elements of R such that x ◦ b = y ◦ b.
Now x ◦ b ∈ x ◦ a ◦ { }A ◦ F and y ◦ b ∈ y ◦ a ◦ { }A ◦ F , whence

∃J ∈ E ∃e ∈ I (epi) ∃z ∈ R

such that z ∈ e ◦ x ◦ a ◦ { }A ◦ P (a) and z ∈ e ◦ y ◦ a ◦ { }A ◦ P (a). It follows that e ◦ x ◦ a =

z ◦ a = e ◦ y ◦ a. Thus x ◦ a = y ◦ a as e is epic, and therefore x = y as 〈a, b〉 is monic. It follows

that b is a monomorphism, i.e. F preserves binary intersection iff b is a monomorphism.

s3) In case F = ∃g : P (A) −→ P (B) we see that g is a monomorphism iff ∃g preserves binary

intersection.

s4) The morphisms of the form P (f) : P (A) −→ P (B) are exactly the lrc-morphisms (i.e.

left exact and right continuous).

Indeed, if F = P (a) ◦ ∃b is lrc then b is an isomorphism, by s1) and s2), and therefore

F = P (a) ◦ P (b−1) = P (b−1 ◦ a).

In particular if F is both sup- and inf-preserving then there exists a uniquely determined

f ∈ HomE(B,A) such that F = P (f).

s5) If F : P (A) −→ P (B) is an order-preserving isomorphism then F = ∃g where g : A −→ B

is an isomorphism.

The proof of the tripleability theorem which we are now going to establish does not differ

essential from that which was discovered independently by R. Paré, [22]. Indeed, the fact

that P reflects all coequalizers can be replaced by the fact that P is faithful. Thus if we are

primarily interested in the finite colimits we only need to construct ∃f for f monic, to verify

that ∃f ◦ P (f) = id for f monic and to establish the internal Beck condition for pull back

diagrams with two opposite faces monic. The existence of finite colimits now follows from the

fact that the Eilenberg-Moore category for a monad has the same type of inverse limits as the

base category.

The reason that we have not adopted this approach is that we wanted more than the mere

existence, namely the elementary description which does not follow directly from the indicated

method.

Theorem 2.5. Let E be an elementary topos then the functor

1) P : Eop −→ E

is tripleable.

Proof. The contravariant functor P : E −→ E is adjoint to itself on the right, i.e. the covariant

functor P : Eop −→ E has a left adjoint. Eop has all finite colimits as E has all finite limits.

The functor P : Eop −→ E reflects coequalizers. Indeed, let
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2) B C

f
//

B C
g

//A B
i //

be a diagram in E and assume that

P (C) P (B)

P (f)
//

P (C) P (B)
P (g)

// P (B) P (A)
P (i)

// //

is a coequalizer diagram in E.

As P is faithful we see that i ◦ f = i ◦ g, and as P (i) is epic we know that i is monic. Let

h ∈ HomE(X,B) and assume that h ◦ f = h ◦ g. Then P (f) ◦P (h) = P (g) ◦P (h) and therefore

there exists q ∈ HomE(P (A), P (X)) such that P (i) ◦ q = P (h). As P (i) is epi (split) it follows

that q is an internal functor which is sup- and inf-preserving. It follows from s4) that there

exists m ∈ HomE(X,A) such that q = P (m). Again, as P is faithful, we see that h = m ◦ i
proving that 2) is an equalizer diagram.

The functor P : Eop −→ E preserves coequalizers of P -contractible pairs. Indeed let

3) B C

f
//

B C
g

//A B// i //

be an equalizer such that P (f) and P (g) have a contractible coequalizer in E, i.e.

P (C) P (B)

P (f)
//

P (C) P (B)P (g) //P (C) P (B)
oo

s

P (B) Q
q
// //

P (B) Qoo
t

such that P (f) ◦ q = P (g) ◦ q, t ◦ q = idQ, s ◦ P (g) = idP (B) and s ◦ P (f) = q ◦ t. We claim

that P (i) = coeq(P (f), P (g)).

Consider the diagram

4)
D B

a //

B

D

OO

x

OO

B C
f

// C

B

OO

g

OO

A

B

HH

i

HH

A

B

66

i

66

A

D

??

m

??

where the inner square is a pull back and m is the proof of i ◦ f = i ◦ g. Notice that g and x

are monic as P (g) is epi (split by s).

We claim that a ◦ g = a ◦ f . Indeed P (a ◦ f) = P (f) ◦ P (a) = P (f) ◦ s ◦ P (g) ◦ P (a) =

P (f) ◦ s ◦ P (f) ◦ P (x) = P (f) ◦ q ◦ t ◦ P (x) = P (g) ◦ q ◦ t ◦ P (x) = P (g) ◦ s ◦ P (f) ◦ P (x) =

P (g) ◦ s ◦ P (g) ◦ P (a) = P (g) ◦ P (a) = P (a ◦ g), and so a ◦ f = a ◦ g as P is faithful.

Let h ∈ HomE(D,A) be the proof of a ◦ f = a ◦ g, i.e. h is uniquely determined by the

equation h ◦ i = a. Notice that m ◦ h ◦ i = m ◦ a = i. It follows that m ◦ h = idA.

We claim that

P (C) P (B)

P (f)
//

P (C) P (B)P (g) // //P (C) P (B)
oo
∃g
oo
P (B) P (A)

P (i)
// //

P (B) P (A)oo
P (h)◦∃x

oo
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is a contractible coequalizer diagram in E.

i) P (f) ◦ P (i) = P (g) ◦ P (i) as i ◦ f = i ◦ g.

ii) P (h) ◦ ∃x ◦ P (i) = P (h) ◦ ∃x ◦ P (m ◦ x) = P (h) ◦ ∃x ◦ P (x) ◦ P (m) =

P (h) ◦ P (m) = P (m ◦ h) = P (idA) = idP (A) as x is monic and m ◦ h = idA.

iii) ∃g ◦ P (g) = idP (B) as g is monic.

iv) ∃g ◦ P (f) = P (a) ◦ ∃x = P (h ◦ i) ◦ ∃x = P (i) ◦ P (h) ◦ ∃x, where the first equality is a

consequence of the internal Beck condition applied to the diagram 4).

This concludes the proof of Theorem 2.5.

One of the important operations in elementary topoi which is not directly comprised in

the calculus of ∃, P and ∀ is the unique existentiation. This concept was introduced in

elementary topoi by P. Freyd in Aspects of Topoi. It is used whenever for a given f ∈
HomE(A,B) we need to describe the subobject of the domain A of f to which the restriction of

f defines an isomorphism onto the corresponding image. We shall use the unique existentiation

in its internal form

f : A −→ B into ∃!f : P (A) −→ P (B)

as well as its internal strength:

E
!A,B : BA −→ P (B)P (A)

Consider the following pull back diagram:

X 1//

P (X)

X

OO

{ }X

OO

P (X) Ω
sX // Ω

1

OO

true

OO

I

P (X)

M

??

What does it mean to say that M is a singleton?, i.e. that M ◦ sX = trueI .

We have the following three equivalent elementary descriptions:

1) ∃a : I −→ X such that M = a ◦ { }X .

2) ∃a : I −→ X such that a∈M and ∀J ∈ |E| ∀i ∈ I ∀x ∈ X : x∈i ◦M implies x = i ◦ a.

3) ∃J ∈ |E| ∃e ∈ I (epi) ∃a ∈ X such that a ∈ e ◦M and ∀K ∈ |E| ∀i ∈ I ∀x, y ∈ X:

x ∈ i ◦M and y∈i ◦M implies x = y.

Clearly 1.⇔ 2.⇒ 3. If 3. is valid we may prove 2. as follows:

K J
p0 //

K J
p1

// J I
e // //J

X

a

��

I

X

a

��
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Let p0, p1 be the kernel-pair of e.Let i = p0◦e (= p1◦e), and as p0◦a∈i◦M and p1◦a∈i◦M we

have that p0 ◦ a = p1 ◦ a. As e = coeq(p0, p1) there exists a ∈ HomE(I,X) uniquely determined

by e ◦ a = a.

This proves the validity of 2.

Let TX : P (X) −→ PP (X) be the exponential adjoint of ∧P (X) ◦ sX . If f ∈ HomE(X,Y )

we define ∃!f : P (X) // P (Y ) by the equation

∃!f = P (X)
TX // PP (X)

PP (f)
// PP (Y )

P ({ }Y )
// P (Y )

∃!f is called the internal unique existentiation along f , and it has the following elementary

description:

P (X) P (Y )
∃!f

//P (X)

I

OO

M

I Y
y

//

∀I ∈ |E| ∀M ∈ P (X) ∀y ∈ Y : y ∈ M ◦ ∃!f iff y ◦ { }Y ◦ P (f) ∈ M ◦ TX iff there exists

exactly one x ∈ HomE(I,X) such that x ◦ f = y and x ∈ M .

The strength of the unique existentiation is given by its exponential adjoint

̂E!X,Y = { }Y X × idP (X) ◦ p̃Y X ,X ◦ ∃!evX,Y : Y X × P (X) // P (Y )

and has the following elementary description:

Y X × P (X) P (Y )
̂E

!X,Y
//Y X × P (X)

I

OO

〈g,A〉

I Y
y

//

∀I ∈ |E| ∀g ∈ Y X ∀A ∈ P (X) ∀y ∈ Y : y ∈ 〈g,A〉 ◦̂

E

!X,Y iff there exists exactly one

x ∈ HomE(I,X) such that 〈g, x〉 ◦ evX,Y = y.

An explanation of the tripleability of P : Eop −→ E can be found in the work of M. Stone,

[24], on the characterization of the lattice theoretic structure of power sets. Stone explains

it (in the category of sets) to be that of a complete atomic Boolean algebra. This theorem

has a topos theoretic version which has its own intrinsic beauty, but which furthermore has

interesting applications.

Let S(E) be the Stone category of the elementary topos E. The objects of S(E) are the

complete Heyting algebras in E, and HomS(E)(H,K) is the set of Stone morphisms from H to

K. Recall that f ∈ HomS(E)(H,K) iff f = f∗ in the system

H K

f !
//

H Koo f∗H K

f∗

//
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where f ! a f∗ a f∗ and f∗ preserves implication.

We have seen that the assignment X into P (X) and f ∈ HomE(X,Y ) into S(f) =

(∃f , P (f),∀f ) ∈ HomS(E)(P (X), P (Y )) defines a functor

S : E −→ S(E).

We claim that this functor has a right adjoint

T : S(E) −→ E,

the existence and nature we shall now proceed to describe.

In the category of sets T (H) can be described as the set of atoms in H, where an atom in

H is an element a ∈ H such that 0 6= a and for all b ∈ H we have that b < a implies b = 0.

Alternatively, this property may be described by stating that the map

q : {b ∈ H|b 6 a} −→ 2

which is defined by ({1})q−1 = {a} is an order preserving bijection.

Guided by this observation we introduce the concept of an atom a : N −→ H in a complete

Heyting algebra H in E as follows:

N H
a //N

M

OO

i

H

M

::

b

M Ω
n

//

a is an atom in H iff

∀M ∈ |E| ∀i ∈ N ∀n ∈ Ω ∃! b ∈ H such that

b 6 i ◦ a and 〈i ◦ a, b〉 ◦ δH = n iff

a ◦ atH = trueN where

atH = H
〈{ }H ,↓segH〉

// P (H)× P (H)
̂E

!H,Ω
// P (Ω)

∀Ω // Ω

Lemma 2.2. Stone morphisms preserve atoms.

Proof. Let f ∈ HomS(E)(H,K) and consider the following diagram

N H
a //N

M

OO

i

H

M

<<

y

H K
f !

//

M

K

x

66

We shall verify that ∀M ∈ |E| ∀i ∈ N ∀x ∈ K such that x 6 i ◦ a ◦ f ! ∃! y ∈ H such

that y ◦ f ! = x and furthermore 〈i ◦ a, y〉 ◦ δH = 〈i ◦ a ◦ f !, x〉 ◦ δK .

If x 6 i ◦ a ◦ f ! then x = i ◦ a ◦ f ! ∧ x =
(2)

(i ◦ a ∧ x ◦ f∗) ◦ f !

and
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〈i◦a◦f !, x〉◦ δK =
(1)

(i◦a◦f !→ x)◦ α∗ =
(4)

(i◦a→ x◦f∗)◦f∗ ◦α∗ = (i◦a→ x◦f∗)◦β∗ =

(i ◦ a→ (i ◦ a ∧ x ◦ f∗)) ◦ β∗ =
(1)
〈i ◦ a, i ◦ a ∧ x ◦ f∗〉 ◦ δH

(1) as the order ↑ ŝegH =→ ◦ α∗ on a Heyting algebra (page 36) is antisymmetric, (2) by

Proposition 2.14 2), and (4) and by Proposition 2.14 4) and so if we let y = i ◦ a ∧ x ◦ f∗ we

have y 6 i ◦ a and y ◦ f ! = x.

To prove the uniqueness of y consider the order preserving functions

HomE(M,H) HomE(M,K)

R //

HomE(M,H) HomE(M,K)oo
L

given by (y)R = (i ◦ a → y) ◦ f∗ and (x)L = i ◦ a ∧ x ◦ f∗, then L a R and so R ◦ L ◦ R = R.

Thus, if y ∈ HomE(M,H) then (i ◦ a→ ((i ◦ a→ y) ◦ f∗ ◦ f∗ ∧ i ◦ a)) ◦ f∗ = (i ◦ a→ y) ◦ f∗ and

so if y 6 i ◦ a we know that 〈i ◦ a, (i ◦ a→ y) ◦ f∗ ◦ f∗ ∧ i ◦ a〉 ◦ δH = 〈i ◦ a, y〉 ◦ δH . It follows

that (i ◦ a→ y) ◦ f∗ ◦ f∗ ∧ i ◦ a = y as i ◦ a is an atom.

Let y, z ∈ H such that y, z 6 i ◦ a then i ◦ a ∧ z ◦ f ! ◦ f∗ 6 y ⇔ z ◦ f ! ◦ f∗ 6 i ◦ a → y ⇔
z ◦ f ! 6 (i ◦ a→ y) ◦ f∗ ⇔ z 6 (i ◦ a→ y) ◦ f∗ ◦ f∗ ⇔ z 6 (i ◦ a→ y) ◦ f∗ ◦ f∗ ∧ i ◦ a⇔ z 6 y.

It follows that i ◦ a ∧ z ◦ f ! ◦ f∗ = z.

Let y, z ∈ H such that y, z 6 i ◦ a and assume that y ◦ f ! = z ◦ f ! then z = y.

Indeed z = i ◦ a ∧ z ◦ f ! ◦ f∗ = i ◦ a ∧ y ◦ f ! ◦ f∗ = y.

Finally, let M ∈ |E|, i ∈ N and n ∈ Ω and let y0 ∈ H be the unique solution to yo 6 i ◦ a
and 〈i ◦ a, y0〉 ◦ δH = n.

Let x0 = y0 ◦ f !. As x0 = y0 ◦ f ! 6 i ◦ a ◦ f ! we know ∃!y ∈ H such that y 6 i ◦ a and

y ◦ f ! = x0 and for this y we know that 〈i ◦ a, y〉 ◦ δH = 〈i ◦ a ◦ f !, x0〉 ◦ δK .

As y0, y 6 i◦a and y◦f ! = x0 = y0◦f ! we have that y0 = y proving that 〈i◦a◦f !, x0〉◦δK =

〈i ◦ a, y〉 ◦ δH = 〈i ◦ a, y0〉 ◦ δH = n.

As for the uniqueness, assume that x1 6 i ◦ a ◦ f ! and 〈i ◦ a ◦ f !, x1〉 ◦ δK = n. Let y1 6 i ◦ a
be the unique solution to y1 ◦ f ! = x1. As y1 satisfies 〈i ◦ a, y1〉 ◦ δH = 〈i ◦ a ◦ f !, x1〉 ◦ δK = n

we see that y1 = y0 as a is an atom, whence x1 = y1 ◦ f ! = y0 ◦ f ! = x0.

This proves that a ◦ f ! is an atom.

Let H ∈ |S(E)| and let iH : T (H) −→ H be the extension of the atoms in H, i.e. the

subobject of H defined by the following pull back diagram:

T (H) 1//

H

T (H)

OO

iH

OO

H Ω
atH // Ω

1

OO

true

OO

By Lemma 2.2 we see that there exists for any f ∈ HomS(E)(H,K) a morphism T (f) :

T (H) −→ T (K) uniquely determined by the condition

iH ◦ f ! = T (f) ◦ iK
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Consequently, the assignment

H into T (H) and f ∈ HomS(E)(H,K) into T (f) ∈ HomE(T (H), T (K))

defines a functor

T : S(E) −→ E.

Let X ∈ |E| and H ∈ |S(E)| and

P (X) H

g!
//

P (X) Hoo
g∗

g! a g∗

a pair of internal adjoint functors. By Theorem 2.1 we know that if h = { }X ◦ g! then

g! = ∃h ◦ supH and g∗ =↓segH ◦ P (h).

Observe that as g∗ preserves binary intersection g∗ preserves implication iff

∀I ∈ |E| ∀a, b ∈ H ∀x ∈ X : x ◦ { }X ∧ a ◦ g∗ 6 b ◦ g∗ implies x ◦ h ∧ a 6 b.

As g∗ is an internal functor on complete lattices then g∗ has a right adjoint iff g∗ is sup-

preserving iff ∀I ∈ |E| ∀A ∈ P (H) ∀x ∈ X : x ◦ h 6 A ◦ supH implies ∃J ∈ |E| ∃ e ∈ I
(epi) ∃ a ∈ H such that a ∈ e ◦A and e ◦ x ◦ h 6 a.

Lemma 2.3. The internal functor g∗ =↓segH ◦ P (h) from H to P (X) preserves implication

and has a right adjoint iff the morphism h ∈ HomE(X,H) is an atom in H.

Proof. Assume that g = (g!, g∗, g∗) ∈ HomS(E)(P (X), H) and let N ∈ |E|, n ∈ X, a, b ∈ H
such that a 6 n ◦ h, b 6 n ◦ h and 〈n ◦ h, a〉 ◦ δH = 〈n ◦ h, b〉 ◦ δH .

If M ∈ |E|, i ∈ N and m ∈ X and m ∈ i◦(n◦{ }X ∧a◦g∗), i.e. if m = i◦n and m◦h 6 i◦a
then i ◦ n ◦ h = i ◦ a, then i ◦ n ◦ h = i ◦ b and so m ∈ i ◦ b ◦ g∗. As g∗ preserves implication we

have that a = n ◦ h ∧ a 6 b. Dually b 6 a, i.e. a = b.

This shows that h satisfies the uniqueness property of atoms.

Next, consider the following diagram

P (X) H

g!
//

P (X) Hoo g∗P (X) H
g∗

//
H Ω
oo α∗

H Ω
α∗

//X P (X)//
{ }X

//

I

X

i

OO

I Ω
n //

where I ∈ |E|, i ∈ X and n ∈ Ω.

As i ◦ h ∧ n ◦ α∗ 6 i ◦ h and as 〈i ◦ h, i ◦ h ∧ n ◦ α∗〉 ◦ δH = (i ◦ h→ (i ◦ h ∧ n ◦ α∗)) ◦ α∗ =

(i ◦ h→ n ◦ α∗) ◦ α∗ = (i ◦ { }X ◦ g!→ n ◦ α∗) ◦ α∗ = (i ◦ { }X ⇒P (X) n ◦ α∗ ◦ g∗) ◦ g∗ ◦ α∗ =

(i ◦ { }X ⇒P (X) n ◦∆X) ◦ ∀X = i ◦ { }X ◦ ∃X ⇒P (X) n = trueI ⇒P (X) n = n by repeated

applications of Proposition 2.14, we see that h is an atom in H.

Conversely, assume that h ∈ HomE(X,H) is an atom in H. We claim that g∗ preserves

implication.
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Let I ∈ |E|, a, b ∈ H and x ∈ X such that x ◦ { }X ∧ a ◦ g∗ 6 b ◦ g∗. As x ◦ h ∧ a ∧ b 6
x ◦ h ∧ a 6 x ◦ h we have that 〈x ◦ h, x ◦ h ∧ a〉 ◦ δH > 〈x ◦ h, x ◦ h ∧ a ∧ b〉 ◦ δH . Let J ∈ |E|
and i ∈ I such that i ◦ x ◦ h = i ◦ x ◦ h ∧ i ◦ a, then i ◦ x ∈ i ◦ (x ◦ { }X ∧ a ◦ g∗) and so

i ◦ x ∈ i ◦ b ◦ g∗, i.e. i ◦ x ◦ h 6 i ◦ b. It follows that i ◦ x ◦ h = i ◦ x ◦ h ∧ i ◦ a ∧ i ◦ b and so

〈x ◦ h, x ◦ h ∧ a〉 ◦ δH = 〈x ◦ h, x ◦ h ∧ a ∧ b〉 ◦ δH . As a ◦ h is an atom in H we conclude that

x ◦ h ∧ a = x ◦ h ∧ a ∧ b and therefore x ◦ h ∧ a 6 b.
This proves that g∗ preserves implication.

Finally, to see that g∗ has a right adjoint let I ∈ |E|, A ∈ P (H) and x ∈ X such that

x ◦ h 6 A ◦ supH .

Let n ∈ HomE(I,Ω) be the following character:

n = 〈x ◦ h ◦ { }H , A〉 ◦ p̃H,H ◦ ∃(→◦α∗) ◦ supΩ.

We claim that n = trueI .

As x ◦h is an atom there exists z ∈ HomE(I,H) such that z 6 x ◦h and (x ◦ h→ z) ◦ α∗ =

〈x◦h, z〉 ◦ δH = n. It follows that 〈x◦h◦{ }H , A〉 ◦ p̃H,H 6 (x◦h→ z)◦α∗ ◦↓segΩ ◦P (→ ◦α∗).
If J ∈ |E|, i ∈ I and a ∈ H such that a ∈ i ◦ A then (i ◦ x ◦ h→ (i ◦ x ◦ h ∧ a)) ◦ α∗ =

(i ◦ x ◦ h→ a) ◦ α∗ 6 (i ◦ x ◦ h → i ◦ z) ◦ α∗, and so i ◦ x ◦ h ∧ a 6 i ◦ z as the map

(i ◦ x ◦ h→ ( )) ◦ α∗ is injective on the ↓-segments of i ◦ x ◦ h in HomE(J,H) and as this

map preserves binary intersection. It follows that 〈x ◦ h ◦ { }H , A〉 ◦ p̃H,H 6 z◦ ↓segH ◦ P (∧)

and therefore z > 〈A, x ◦ h ◦ { }H〉 ◦ p̃H,H ◦ ∃∧ ◦ supH = 〈A, x ◦ h〉 ◦ (supH × idH) ◦ ∧ = x ◦ h,

i.e z = x ◦ h or equivalently n = trueI .

Recalling the construction of n we see that ∃N ∈ |E|, ∃e ∈ I (epi), ∃a ∈ H such that

(e ◦ x ◦ h→ a) ◦ α∗ = trueN i.e. e ◦ x ◦ h 6 a.

This concludes the proof of Lemma 2.3.

Lemma 2.4. Compatible atoms are equal.

Proof. Let H ∈ |S(E)| and a, b ∈ HomE(N,H) be two atoms in H such that a 6 b.

∀I ∈ |E| ∀y ∈ H ∃! x ∈ H such that 〈i ◦ b, y〉 ◦ δH = 〈i ◦ a, x〉 ◦ δH and x 6 i ◦ a.

Now 〈i◦a, x〉◦δH = (i◦a→ x)◦α∗ = (i◦b→ ((i◦a→ x)∧i◦b))◦α∗ = 〈i ◦ b, (i ◦ a→ x) ∧ i ◦ b〉 ◦ δH ,

whence 〈i ◦ b, y〉 ◦ δH = 〈i ◦ b, (i ◦ a→ x) ∧ i ◦ b〉 ◦ δH .

Taking I = N , i = idN and y = a we get that 〈b, a〉 ◦ δH = 〈b, (a → x) ∧ b〉 ◦ δH and as

a 6 b and (a→ x) ∧ b 6 b, we conclude that a = (a→ x) ∧ b as b is an atom. But a 6 a→ x

iff a 6 x iff a→ x = eN , whence a = eN ∧ b = b.

This concludes the proof of Lemma 2.4.

Corollary 2.15. If H ∈ |S(E)| then iH◦ ↓segH ◦ P (iH) = { }T (X).

Proposition 2.17. E is a coreflective subcategory of the Stone category S(E).

Proof. Let H ∈ |S(E)|. By Lemma 2.3 we have a Stone morphism f = (f !, f∗, f∗) : PT (H) −→
H determined by { }T (H) ◦ f ! = iH .

By Lemma 2.4 we have that { }T (H) ◦ f ! ◦ f∗ = { }T (H) ◦ ∃iH ◦ supH◦ ↓segH ◦ P (iH) =

iH ◦ ↓segH ◦ P (iH) = { }T (H). It follows that f ! ◦ f∗ = idPT (H) as f∗ is sup-preserving.
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If g ∈ HomS(E)(P (X), H) then there exists, by Lemma 2.3, a unique h ∈ HomE(X,T (H))

such that h ◦ iH = { }X ◦ g!. It follows that S(h) ◦ f = g.

This proves that S a T .

From the characterization of the internal substitution functors it follows that the front ad-

junction for S a T is a natural isomorphism, i.e. the atoms of an internal power object are the

singletons. This can also be seen by applying Lemma 2.3, Lemma 2.4 and Proposition 1.3.

We shall say that an object H ∈ |S(E)| is atomic iff the sup of the atoms in H is the

greatest global section e in H.

It is now a formal consequence of Proposition 2.17 and Proposition 2.15 that the objects in

S(E) for which the end adjunction f : PT (H) −→ H is an isomorphism are exactly those for

which trueT (H) ◦ f ! = e. This means that we have

Theorem 2.6 (Stone). The objects of the form P (X) are the complete atomic Heyting algebras

in E.



Chapter 3

Functors on Elementary Topoi

In this chapter we shall study some of the intrinsic properties of the functors used in comparing

elementary topoi. The type of the results and the method of proof requires a systematic notation

which we shall presently develop.

Let

F : E //E0

be a functor on elementary topoi and assume that F preserves all binary cartesian products

and the terminal object. The functor F comes equipped with

1) a natural isomorphism

F̃ = {F̃A,B : F (A)× F (B) // F (A×B)}(A,B)∈|E|×|E|

2) a natural transformation

F̂ = {F̂A,B : F (BA) // F (B)F (A)}(A,B)∈|E|×|E|

3) a canonical isomorphism

F 0 : 10
// F (1),

making the system (F, F̃ , F̂ , F 0) into a cartesian closed functor. Finally we shall be using

the character

4) d = chF (Ω)(F (true)) : F (Ω) // Ω0.

Definition 3.1. A Functor F : E //E0 of elementary topoi is said to be logical iff

1) F is left exact.

2) F preserves exponentiation (i.e. F̂ is a natural isomorphism).

3) F preserves the subobject classifier (i.e. d is an isomorphism).

Logical functors are very important. Indeed, as they preserve all the axioms characterizing

an elementary topos, it follows that all constructions in elementary topoi based on these axioms

will be preserved by logical functors. In particular, logical functors are right exact.

46
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Let

E E0

L //

E E0oo
R

, L a R

be a pair of adjoint functors on elementary topoi.We shall deal with this adjunction in terms

of the two natural transformations:

1. the front adjunction

t = {tA : A //RL(A)}A∈|E|

2. the end adjunction

v = {vX : LR(X) //X}X∈|E0|

The functor R is left exact and therefore it has the structure (R, R̃, R̂, R0) described above.

The character chR(Ω0)(R(true0)) will be denoted s. Without further assumptions on L we only

have the character chL(Ω)(L(true)) which will be denoted d. Observe that L preserves binary

cartesian products iff

{R(XL(A))
R̂L(A),X

//R(X)RL(A) R(X)tA
//R(X)A}(A,X)∈|E|×|E0|

is a natural isomorphism.

Definition 3.2. A geometric functor from E0 to E is a pair of adjoint functors

E E0

L //

E E0oo
R

, L a R

on elementary topoi, where the left adjoint is left exact.

In accordance with the terminology from sheaf theory:

the left adjoint L is called the inverse image functor and

the right adjoint R is called the direct image functor.

Notice that the direction of a geometric functor is that of the right adjoint R.

Definition 3.3. An essential functor from E0 to E is a geometric functor from E0 to E where

the inverse image functor has a left adjoint

E E0

oo T

E E0L //E E0
oo

R

T a L a R

We shall deal with the adjunction T a L in terms of the two natural transformations:

1. the front adjunction

η = {ηX : X // LT (X)}X∈|E0|
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2. the end adjunction

ε = {εA : TL(A) //A}A∈|E|

In the case of essential functors we shall use the natural transformation

3. θ = {θX,A : AT (X) //R(L(A)X)}(A,X)∈|E|×|E0|

θ is the conjugate of the natural transformation L̂ and θ and L̂ are defined in terms of each

other by the following diagrams:

L(A)LT (X) L(A)X
L(A)ηX

//

L(AT (X))

L(A)LT (X)

L̂T (X),A

��

L(AT (X)) LR(L(A)X)
L(θX,A)

// LR(L(A)X)

L(A)X

vL(A)X

��

and

BTL(A) R(L(B)L(A))
θL(A),B

//

BA

BTL(A)

BεA

��

BA RL(BA)
tBA // RL(BA)

R(L(B)L(A))

R(L̂A,B)

��

Notice that θ is pointwise monic (iso) iff L̂ is pointwise monic (iso).

Definition 3.4. A local homeomorphism from E0 to E is an essential functor from E0 to E

where the inverse image functor is logical.

E E0

oo T

E E0L //E E0
oo

R

T a L a R

and L is logical.

Let

E E0

L //

E E0oo
R

, L a R

be a pair of adjoint functors on elementary topoi such that the left adjoint L preserves bi-

nary cartesian products and the terminal object. Under these assumptions we know that the

morphism

d̂ = Ω
tΩ //RL(Ω)

R(d)
//R(Ω0)

is a left exact morphism of bounded lattices in E.

Indeed, R preserves all such structures as R is left exact, and as the lower semilattice struc-

ture of the subobject classifier is equationally equivalent with that of a commutative monoid

whose multiplication is idempotent, it follows that L must preserve not only this structure, but

also the subobject of Ω×Ω defining the associated order relation. It follows that tΩ is left exact
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as t is a natural transformation. Finally d is left exact as L(true) is the greatest global section

in the induced ordering on L(Ω) and d = chL(Ω)(L(true)).

Our first theorem in this chapter is due to W. Mitchell [19]. It is included here, not because

the above observations yield the refinement that d and d̂ are always left exact, but because we

want to stress the essential feature (namely d̂ a s) of this theorem. Indeed, this adjunction is

important for any closer analysis of geometric functors on elementary topoi.

Theorem 3.1. Let

E E0

L //

E E0oo
R

, L a R

be a pair of adjoint functors on elementary topoi and assume that the left adjoint L preserves

binary cartesian products and the terminal object. Then the following statements are equivalent:

1) L is left exact.

2) L preserves the pull back diagram defining s.

3) d̂ a s.

Proof.

1)⇒ 2) This is obviously the case.

2) ⇒ 3) We know that both d̂ and s are internal functors, and as true ◦ d̂ ◦ s = true we have

that idΩ 6 d̂ ◦ s. By 2) we know that L(s) ◦ d = chLR(Ω0)(LR(true0)), and therefore we see

that L(s) ◦ d 6 vΩ0 by the naturality of v. It follows that

s ◦ d̂ = tR(Ω0) ◦R(L(s) ◦ d) 6 tR(Ω0) ◦R(vΩ0
) = idR(Ω0).

This proves that d̂ a s.

3) ⇒ 1) Let i : A // B be a monomorphism in E such that L(i) is monic. As t is natural we

have that

chB(i) 6 tB ◦R(chL(B)(L(i))) ◦ s,

and as d̂ a s we deduce that

tB ◦R(L(chB(i)) ◦ d) = chB(i) ◦ d̂ 6 tB ◦R(chL(B)(L(i))),

i.e.

L(chB(i)) ◦ d 6 chL(B)(L(i)).

As L is a functor we have that

chL(B)(L(i)) 6 L(chB(i)) ◦ d

i.e.

chL(B)(L(i)) = L(chB(i)) ◦ d.
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In particular if i = 4A : A //A×A we get that

δL(A) = L̃A,A ◦ L(δA) ◦ d.

Recall that a morphism i : A //B is monic iff i× i◦δB = δA. It follows, therefore, from the

below calculation that L preserves monomorphisms. Indeed, if i : A //B is a monomorphism

in E, then

L(i)× L(i) ◦ δL(B) = L(i)× L(i) ◦ L̃B,B ◦ L(δB) ◦ d =

L̃A,A ◦ L(i× i) ◦ L(δB) ◦ d = L̃A,A ◦ L(i× i ◦ δB) ◦ d =

L̃A,A ◦ L(δA) ◦ d = δL(A).

Finally, if f, g ∈ HomE(B,C) then

chL(B)(eq(L(f), L(g))) = 〈L(f), L(g)〉 ◦ δL(C) =

〈L(f), L(g)〉 ◦ L̃C,C ◦ L(δC) ◦ d = L(〈f, g〉) ◦ L(δC) ◦ d =

L(〈f, g〉 ◦ δC) ◦ d = L(chB(eq(f, g))) ◦ d.

This proves that L preserves equalizers and concludes the proof of Theorem 3.1.

Corollary 3.1. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor from E0 to E, then the following statements are equivalent:

1) s is epic.

2) d̂ is monic.

3) tΩ is monic.

4) t is a pointwise monic natural transformation.

5) L is a faithful functor.

6) j = d̂ ◦ s = idΩ.

Proof. Clearly 5) ⇐⇒ 4)⇒ 3), and as d̂ a s we have that

1) ⇐⇒ 2) ⇐⇒ 6)⇒ 3).

3)⇒ 6): Consider the diagram

1 RL(1)
t1 //

Ω

1

OO

true

OO

Ω RL(Ω)
tΩ // RL(Ω)

RL(1)

OO

RL(true)

OO

1 RL(1)∼
//

Ω

1

OO

true

OO

Ω RL(Ω)
tΩ // RL(Ω)

RL(1)

OO

RL(true)

OO

RL(1) R(10)//

RL(Ω)

RL(1)

RL(true)

RL(Ω) R(Ω0)
R(d)

// R(Ω0)

R(10)

OO

R(true0)

OO

RL(1) R(10)∼
//

RL(Ω)

RL(1)

RL(true)

RL(Ω) R(Ω0)
R(d)

// R(Ω0)

R(10)

OO

R(true0)

OO

R(10) 1//

R(Ω0)

R(10)

OO

R(true0

OO

R(Ω0) Ω
s // Ω

1

OO

true

OO

R(10) 1∼
//

R(Ω0)

R(10)

OO

R(true0

OO

R(Ω0) Ω
s // Ω

1

OO

true

OO

∗ ∗∗ ∗ ∗ ∗
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∗∗ and ∗ ∗ ∗ are pull back diagrams and ∗ is a commutative square by the naturality of t. If

tΩ is monic then ∗ is a pull back, and therefore j = d̂ ◦ s = tΩ ◦R(d) ◦ s = idΩ.

3)⇒ 4): Consider the following diagram

A ΩA//
{ }A

//

RL(A)

A

OO

tA

RL(A) RL(ΩA)//
RL({ }A)

// RL(ΩA)

ΩA

OO

tΩA

ΩA

RL(ΩA)

ΩA

tΩA

RL(ΩA) R(L(Ω)L(A))
R(L̂A,Ω)

// R(L(Ω)L(A))

RL(Ω)A

R(L(Ω)L(A))R(L(Ω)L(A)) RL(Ω)RL(A)
R̂L(A),L(Ω)

// RL(Ω)RL(A)

RL(Ω)A

RL(Ω)tA

��

ΩA RL(Ω)A
tΩ
A

//

(i) (ii)

(i) is commutative as t is a natural transformation, (ii) is commutative as t is a closed

natural transformation, and as ( )A preserves monomorphisms we have that tΩ
A is monic if tΩ

is monic and consequently tA is also a monomorphism.

This concludes the proof of Corollary 3.1.

Corollary 3.2. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor from E0 to E, then the following statements are equivalent:

1) s is monic.

2) d̂ is monic.

3) L(s) ◦ d = vΩ0
.

4) vΩ0 is a monomorphism.

5) v is a pointwise monic natural transformation.

Proof. As s ◦ d̂ = tR(Ω0
) ◦ R(L(s) ◦ d) and as d̂ a s we have that 1) ⇐⇒ 2) ⇐⇒ 3). Clearly

5)⇒ 4), and if vΩ0
is monic then the following diagram which is commutative by the naturality

of v

LR(10) 10

v10 //

LR(Ω0)

LR(10)

OO

LR(true0)

OO

LR(Ω0) Ω0

vΩ0 // Ω0

10

OO

true0

OO

LR(10) 10∼
//

is a pull back as it is commutative, and therefore we have

vΩ0 = chLR(Ω0)(LR(true0)) = L(s) ◦ d.

This proves that 4)⇒ 3).

Finally, assume that L(s) ◦ d = vΩ0 and let X ∈ |E0|, then

δLR(X) = L̃R(X),R(X) ◦ L(δR(X)) ◦ d =
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L̃R(X),R(X) ◦ L(R̃X,X) ◦ LR(δX) ◦ L(s) ◦ d =

L̃R(X),R(X) ◦ L(R̃X,X) ◦ LR(δX) ◦ vΩ0
=

L̃R(X),R(X) ◦ L(R̃X,X) ◦ vX×X ◦ δX = vX × vX ◦ δX .

This proves that vx is a monomorphism and concludes the proof of Corollary 3.2.

Lemma 3.1. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor from E0 to E,and let X ∈ E0. Then the internal functor

R̂X,Ω0 : R(Ω0
X) //R(Ω0)R(X)

has a left and a right adjoint, RX a R̂X,Ω0
a R̈X . Explicitly,

RX = tR(Ω0)R(X) ◦R(L̂R(X),R(Ω0) ◦ vΩ0
LR(X) ◦ ∃vX )

R̈X = tR(Ω0)R(X) ◦R(L̂R(X),R(Ω0) ◦ vΩ0
LR(X) ◦ ∀vX )

The proof of Lemma 3.1 is a routine exercise which we leave to the reader.

Theorem 3.2. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor from E0 to E, then the direct image functor R preserves completeness

of internally ordered objects.

Proof. Let (H, ↑segH , infH) ∈ |C(E0)|, then (R(H), ↑segR(H)) where

↑segR(H) = R(H)
R(↑segH)

//R(Ω0
H)

R̂H,Ω0 //R(Ω0)
R(H) sR(H)

// ΩR(H)

is an internally ordered object in E as R is left exact.

By Theorem 3.1 we have that d̂ a s and so d̂R(H) a sR(H) .

By Lemma 3.1 we know that RH a R̂H,Ω0 .

Finally, as infH ⊥↑segH , we get that R(infH) ⊥ R(↑segH) as R is left exact. It follows

that

d̂R(H) ◦RH ◦R(infH) ⊥ R(↑segH) ◦ R̂H,Ω0 ◦ sR(H) =↑segR(H),

i.e. (R(H), ↑segR(H), infR(H)) ∈ |C(E)|, where

infR(H) = d̂R(H) ◦RH ◦R(infH) = tPR(H) ◦R(L̂R(H),Ω ◦ dLR(H) ◦ ∃vH ◦ infH)

By virtually the same argument we get that

supR(H) = d̂R(H) ◦RH ◦R(supH) = tPR(H) ◦R(L̂R(H),Ω ◦ dLR(H) ◦ ∃vH ◦ supH)
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Corollary 3.3. The direct image functor of a geometric functor preserves complete Heyting

algebra objects.

Proof. The preservation of completeness follows from Theorem 3.2, and as the functor in ques-

tion is left exact it preserves all finitary operations, in particular it preserves implication.

Remark. If F : E //E0 is a left exact functor on elementary topoi, then (F (Ω), ↑segF (Ω))

is a Heyting algebra object in E0, and ⇒F (Ω)= F̃Ω,Ω ◦ F (⇒).

The statement that F preserves implication is of another nature. It means that the character

d = chF (Ω)(F (true)) preserves implication, i.e. on the level of subobjects this means that if

A,B ∈ P∗(C) then F (A⇒ B) = F (A)⇒ F (B) in P∗(C) is generally valid.

Theorem 3.3. Let F : E //E0 be a left exact functor on elementary topoi, then

1) F preserves implication iff d = chF (Ω)(F (true)) is monic.

2) F preserves universal quantification iff F preserves implication and F̂ is internally faithful

(i.e. F̂ is a pointwise monic natural transformation).

Proof. Ad 1).

If F preserves implication, i.e. ∀I ∈ |E0| ∀a, b ∈ F (Ω) : (a ⇒ b) ◦ d = a ◦ d ⇒ b ◦ d, then

d reflects the ordering and so d must be a monomorphism.

Conversely, if d is monic and a ◦ d 6 b ◦ d, then a 6 b as d preserves binary intersection,

whence (a⇒ b) ◦ d = !I ◦ F 0 ◦ F (true) ◦ d = !I ◦ true0, i.e. F preserves implication.

Ad 2).

Observe that F̂ is pointwise monic iff ∀A ∈ |E| the value F̂A,Ω : F (ΩA) // F (Ω)
F (A)

is

monic. This follows from the proof of Theorem 1.1.

If F preserves implication and is internally faithful, then

F̂A : F (ΩA) F (Ω)F (A)//
F̂A,Ω

// F (Ω)F (A) Ω0
F (A)// d

F (A)
//

defines a pointwise monic natural transformation.

Let f ∈ HomE(A,B). We claim that F (∀f ) ◦ F̂B = F̂A ◦ ∀F (f), but this follows from

commutativity of the diagram

FP (A) FPP (A)//
F (↓segP (A))

//

PF (A)

FP (A)

OO

F̂A

OO

PF (A) PPF (A)//
↓segPF (A)

// PPF (A)

FPP (A)

PFP (A) PFP (B)
PFP (f)

//

PPF (A)

PFP (A)

P (F̂A)

����

PPF (A) PPF (B)
PPF (f)

// PPF (B)

PFP (B)

P (F̂B)

����

FPP (A) FPP (B)
FPP (f)

//

PFP (A)

FPP (A)

OO

F̂P (A)

OO

PFP (A) PFP (B)
PFP (f)

// PFP (B)

FPP (B)

OO

F̂P (B)

OO

FPP (B) FP (B)
FP ({ }B)

// //

PPF (B)

FPP (B)

PPF (B) PF (B)
P ({ }F (B))

// // PF (B)

FP (B)

OO

F̂B

OO

PFP (B)

PF (B)

PF ({ }B)

77

1

2

3
4

5



CHAPTER 3. FUNCTORS ON ELEMENTARY TOPOI 54

1) is commutative as F̂A reflects order, being left exact and monic.

2), 3) and 4) are commutative by the naturality of F̂ .

5) is commutative as F is left exact.

Conversely, assume that F preserves universal quantification, then F preserves implication.

Indeed, notice that in

1 6//

Ω

1

OO

true

OO

Ω Ω× Ω
〈trueΩ,idΩ〉

// Ω× Ω

6

OO

6 1//

Ω× Ω

6

OO

OO

Ω× Ω Ω
⇒ // Ω

1

OO

true

OO

6 P.B.

the front square, 6), is both a pull back and a universal quantification diagram, and therefore

it follows that d preserves implication, - by chasing true0 by the external Beck-condition in the

following pull back diagram

Ω0 Ω0 × Ω0

〈trueΩ0
,idΩ0

〉
//

F (Ω)

Ω0

d

��

F (Ω) F (Ω)× F (Ω)
〈F (trueΩ),idF (Ω)〉

// F (Ω)× F (Ω)

Ω0 × Ω0

d×d

��

10 Ω0
//
true0 //

Finally, we notice that the diagram

F (Ω) Ω0
d //

FP (A)

F (Ω)

F (∀A)

��

FP (A) PF (A)
F̂A // PF (A)

Ω0

∀F (A)

��

is commutative, and therefore

F (1) 10∼
//

FP (A)

F (1)

OO

F (ptrueAq)

OO

FP (A) PF (A)
F̂A // PF (A)

10

OO

ptrueF (A)q

OO

is a pull back. Now, by the above we know that d preserves implication, and as F̂ is natural

we see that F̂A preserves implication. It follows that F̂A reflects the ordering, and so F̂A must

be a monomorphism. Thus F is internally faithful.

Corollary 3.4. The direct image functor R of a geometric functor on elementary topoi pre-

serves universal quantification iff it is full and faithful.

Proof. Let

E E0

L //

E E0oo
R

, L a R



CHAPTER 3. FUNCTORS ON ELEMENTARY TOPOI 55

be a geometric functor on elementary topoi. As L preserves binary cartesian products and

the terminal object we have that R̂ is pointwise monic iff the end adjunction v is pointwise

epic. Also, by Corollary 3.2 we have that s is monic iff v is pointwise monic. It follows that R

preserves universal quantification iff v is a natural isomorphism iff R is full and faithful.

Corollary 3.5. The inverse image functor L of a geometric functor on elementary topoi pre-

serves universal quantification iff

the internal functor d̂ : Ω −→ R(Ω0) has a left adjoint iff

d : L(Ω) −→ Ω0 and L̂Ω,Ω : L(ΩΩ) −→ L(Ω)L(Ω) are monomorphisms.

Proof. Consider the following commutative diagram

ΩX RL(Ω)X
(tΩ)X

//

RL(Ω
X

)

ΩX

OO

tΩX

RL(Ω
X

) R(L(Ω)
L(X)

)
R(L̂X,Ω)

// R(L(Ω)
L(X)

)

RL(Ω)X

RL(Ω)
RL(X)

R(Ω0)
RL(X)R(d)RL(X)

//

R(L(Ω)
L(X)

)

RL(Ω)
RL(X)

R̂L(X),L(Ω)

��

R(L(Ω)
L(X)

) R(Ω0
L(X)

)
R(dL(X))

// R(Ω0
L(X)

)

R(Ω0)
RL(X)

R̂L(X),Ω0

��

RL(Ω)X R(Ω0)X
R(d)X

//

RL(Ω)
RL(X)

RL(Ω)X

RL(Ω)tX

��

RL(Ω)
RL(X)

R(Ω0)
RL(X)R(d)RL(X)

// R(Ω0)
RL(X)

R(Ω0)X

R(Ω0)tX

��

If d̂ = tΩ ◦R(d) has a left adjoint a : R(Ω0) // Ω then for all X in E we have that

AX = R̂L(X),Ω0
◦R(Ω0)

tX ◦ aX a tΩX ◦R(L̂X,Ω ◦ dL(X)) = BX .

Now if f ∈ HomE(X,Y ) thenRPL(f)◦AX = AY ◦P (f). It follows that tP (X) ◦R(L̂X ◦ ∀L(f)) =

BX ◦R(∀L(f))= ∀f ◦BY = tP (X) ◦R(L(∀f ) ◦ L̂Y ), i.e.

L(∀f ) ◦ L̂Y = L̂X ◦ ∀L(f).

This proves that if d̂ has a left adjoint then L preserves universal quantification.

Conversely, assume that d and L̂Ω,Ω are monic. We claim that d̂ has a left adjoint, i.e. that

d̂ is inf-preserving. Whence we must prove that

infΩ ◦ d̂ = tP (Ω) ◦RL(infΩ) ◦R(d) = tP (Ω) ◦R(L(infΩ) ◦ d)

is equal to

∃d̂ ◦ infR(Ω0) = ∃d̂ ◦ d̂
R(Ω0) ◦RΩ0

◦R(infΩ0
) =

∃d ◦ tPR(Ω0) ◦R(L̂R(Ω0),Ω ◦ dLR(Ω0) ◦ ∃vΩ0
◦ infΩ0

) =

tP (Ω) ◦R(L̂Ω ◦ ∃d ◦ infΩ0
),

i.e. we must prove that

L(infΩ) ◦ d equals L̂Ω ◦ ∃d ◦ infΩ0
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but this follows from noting that all the squares in the below diagrams are pull backs.

LP (1) PL(1)//

L̂1

//

LP (Ω)

LP (1)

OO

L(∃true)

OO

LP (Ω) PL(Ω)//
L̂Ω // PL(Ω)

PL(1)

OO

∃L(true)

PL(1) P (10)
∃!L(1)

//

PL(Ω)

PL(1)

OO

∃L(true)

OO

PL(Ω) P (Ω0)
∃d // P (Ω0)

P (10)

OO

∃true0

OO

P (10) 10
//

P (Ω0)

P (10)

OO

∃true0

OO

P (Ω0) Ω0

infΩ0 // Ω0

10

OO

true0

OO

and

LP (1) L(1)
L(!P (1))

//

LP (Ω)

LP (1)

OO

L(∃true)

OO

LP (Ω) L(Ω)
L(infΩ)

// L(Ω)

L(1)

OO

L(true)

L(1) 10
!L(1)

//

L(Ω)

L(1)

OO

L(true)

OO

L(Ω) Ω0
d // Ω0

10

OO

true0

OO

This concludes the proof of Corollary 3.5

Remark. Observe that the inverse image functor of a geometric functor on elementary Boolean

topoi must necessarily preserve universal quantification as in this case d : L(2) // 20 is an

isomorphism, and as the classical logic yields that

∀A : 2A
¬A // aA

∃A // 2
¬ // 2

for any elementary Boolean topos.

We refer the reader to [9] for a nontrivial application of Theorem 3.3.

We finish this chapter with an application of Stone’s theorem for elementary topoi to the

theory of logical functors.

Theorem 3.4. Let L : E // E0 be a logical functor on elementary topoi, then L has a

left adjoint T : E0
//E iff L has a right adjoint R : E0

//E.

Proof. Consider the following diagram

E E0
L //

Eop

E

P

��

Eop Eop
0

Lop // Eop
0

E0

P

��

which is commutative up to natural isomorphism as L is a logical functor. In Chapter 2 we saw

that the vertical functors are tripleable, and so it follows from the general theory of monads

that a left adjoint T of L gives rise to a a left adjoint Lop as Eop has coequalizers. But this

means that L has a right adjoint. Thus, the existence of T implies the existence of R.

Suppose for a moment that we have a local homeomorphism. Then the transformation θ

yields a system of natural isomorphisms

θX = θX,Ω : PT (X) //R(L(Ω)X)
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This means that R(L(Ω)X) is orderisomorphic to PT (X) and T (X) can therefore be de-

scribed as the singletons in R(L(Ω)X).

Now assume that L has a right adjoint R. From Corollary 3.1, Proposition 2.13 and the

fact that L is logical we get that if X ∈ |E0| then R(L(Ω)X) is a complete Heyting algebra in

E, and if f ∈ HomE0
(X,Y ) then R(L(Ω)f ) generates a Stone morphism

(Ef , R(L(Ω)f ), Af ) : R(L(Ω)X) //R(L(Ω)Y ).

Thus if we define the functor T : E0
//E by letting

T (X) R(L(Ω)X)//
iX //

be the extension of the atoms in R(L(Ω)X), and T (f) the restriction of Ef to the extension of

the atoms, i.e. such that

T (X) T (Y )
T (f)

//

R(L(Ω)X)

T (X)

OO

iX

OO

R(L(Ω)X) R(L(Ω)Y )
Ef

// R(L(Ω)Y )

T (Y )

OO

iY

OO

is commutative. Furthermore we have the end adjunction from Proposition 2.17, i.e. the Stone

morphism

PT (X) R(LΩ)X
//

f! //

PT (X) R(LΩ)Xoooo f∗PT (X) R(LΩ)X
//

f∗

//

where

f! = ∃iX ◦ supR(L(Ω)X)

f∗ =↓segR(L(Ω)X) ◦ P (iX) and

f! a f∗ a f∗ and f∗ preserving implication and idPT (X) = f! ◦ f∗.

Sublemma 3.1. The front and end adjunction t and v for L a R (with L logical) have left and

right adjoints on all complete lattices in E and E0. In particular they generate Stone morphisms

whenever possible.

Proof. Let A be a complete lattice in E and consider the following diagram.

P (A)

PRL(A)

P (A)

OO

∃tA

PRL(A) RPL(A)
d̂RL(A)◦RL(A)

// RPL(A)

P (A)

RPL(A)RPL(A) RLP (A)
R(L̂−1

A )
// RLP (A)

P (A)

OO

tP (A)

P (A) A
supA/infA

//

RLP (A)

P (A)

OO

tP (A)

RLP (A) RL(A)
RL(supA/infA)

// RL(A)

A

OO

tA

P (A) P (A)
idP (A)

//

(1) (2)

As L preserves existential quantification in E we know that

∃tA ◦ d̂RL(A) ◦RL(A) = tP (A) ◦R(L̂A).

It follows that (1) is commutative. The square (2) is commutative by the naturality of t. Thus

we see that tA is both sup- and inf-preserving. Furthermore, as t is natural it follows that tA
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must preserve all finitary operations on A. In particular if A is a complete Heyting algebra in

E, then tA generates a Stone morphism

RL(A) A

tA!
//

RL(A) Aoo tA
∗RL(A) A

tA∗

//

If Y is a complete lattice in E0 we consider the diagram

P (Y )

PLR(Y )

P (Y )

∃vY

��

PLR(Y ) LPR(Y )
L̂−1
R(Y )

// LPR(Y )

P (Y )

LPR(Y )LPR(Y ) LRP (Y )
L(d̂R(Y )◦RY )

// LRP (Y )

P (Y )

vP (Y )

��

P (Y ) Y
supY /infY

//

LRP (Y )

P (Y )

vP (Y )

��

LRP (Y ) LR(Y )
LR(supY /infY )

// LR(Y )

Y

vY

��

P (Y ) P (Y )
idP (Y )

//

(3) (4)

The square (3) is commutative as

L(d̂R(Y ) ◦RY ) ◦ vP (Y ) = L̂R(Y ) ◦ ∃vY

is simply the exponential adjoint of

d̂R(Y ) ◦RY = tPR(Y ) ◦R(L̂R(Y ) ◦ ∃vY ),

and we noted in the proof of Theorem 3.2 that this equation is valid for any geometric functor.

Thus we see that vY is both sup- and inf-preserving. Again, if Y is a complete Heyting

algebra in E0, then vY generates a Stone morphism

Y LR(Y )

vY !
//

Y LR(Y )oo vY
∗Y LR(Y )

vY ∗
//

This concludes the proof of Sublemma 3.1.

We can now construct the front and end adjunction for the asserted situation T a L.

Consider for X ∈ E0 the following diagram

X

P (X)

X

OO

{ }X

OO

P (X) L(Ω)X
(d−1)X

// L(Ω)X

LT (X)

L(Ω)XL(Ω)X LR(L(Ω)X)
vL(Ω)X !

// LR(L(Ω)X)

LT (X)

OO

L(iX)

OO

X LT (X)
ηX //

In this diagram the upper morphism is the outer left adjoint of a Stone morphism, and as L

is logical the two vertical morphisms are extensions of atoms. Thus ηX exists and is determined

by the commutativity of the diagram. Furthermore

η = {ηX : X // LT (X)}X∈|E0|

is a natural transformation, η : idE0
⇒ LT .
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The end adjunction ε : TL ⇒ idE is defined for A ∈ |E| by the following commutative

diagram

TL(A)

R(L(Ω)L(A))

TL(A)

OO

iL(A)

OO

R(L(Ω)L(A)) RLP (A)
R(L̂−1

A,Ω)
// RLP (A)

A

RLP (A)RLP (A) P (A)
tP (A)!

// P (A)

A

OO

{ }A

OO

TL(A) A
εA //

whose existence follows as the upper morphism is the outer left adjoint of a Stone morphism.

ηL(A) ◦ L(εA) = idL(A)

Consider

L(A) LTL(A)
ηL(A)

//

PL(A)

L(A)

OO

{ }L(A)

OO

PL(A) LR(L(Ω)L(A))
(d−1)L(A)◦v

L(Ω)L(A) !
// LR(L(Ω)L(A))

LTL(A)

OO

L(iL(A))

OO

LTL(A) L(A)
L(εA)

//

LR(L(Ω)L(A))

LTL(A)

LR(L(Ω)L(A)) LP (A)
L(R(L̂−1

A )◦tP (A)!)
// LP (A)

L(A)

OO

L({ }A)

OO

The right adjoint of the upper morphism is

L(tP (A)) ◦ LR(L̂A,Ω) ◦ vL(Ω)L(A) ◦ dL(A) = L̂A,Ω ◦ dL(A) = L̂A

which is an isomorphism, and as L({ }A) ◦ L̂A = { }L(A) it follows that ηL(A) ◦L(εA) = idL(A).

R(L(Ω)X) is atomic.

We shall verify this statement by showing that

f∗ =↓segR(L(Ω)X) ◦ P (iX)

is a monomorphism.

We do this by verifying that

tPT (X) ◦R(L̂T (X),Ω) ◦R(L(Ω)
ηX )

is a right inverse (and hence the inverse) of f∗.

Indeed, consider the diagram on the following page. (1),(2), (3) and (5) are commutative by

naturality. (4) commutes by the definition of L̂. (6) commutes as L is left exact. (7) commutes

by construction of ηX . (8) is commutative as both morphisms in the square are internal functors

which are right adjoint of (d−1)X ◦ vL(Ω)X !.

Finally, using that R(dX) is monic we get that

↓segR(L(Ω)X) ◦ P (iX) ◦ tPT (X) ◦R(L̂T (X),Ω) ◦R(L(Ω)
ηX ) = idR(L(Ω)X).

This proves that R(L(Ω)X) is atomic.
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T (ηX) ◦ L(εT (X)) = idT (X)

Consider

T (X) TLT (X)
T (ηX)

//

R(L(Ω)X)

T (X)

OO

iX

OO

R(L(Ω)X) R(L(Ω)LT (X))
EηX // R(L(Ω)LT (X))

TLT (X)

OO

iLT (X)

OO

TLT (X) T (X)
εT (X)

//

R(L(Ω)LT (X))

TLT (X)

R(L(Ω)LT (X)) PT (X)
R(L̂−1

T (X),Ω
)◦tPT (X)!

// PT (X)

T (X)

OO

{ }T (X)

OO

The right adjoint of the upper morphism is

tPT (X) ◦R(L̂T (X),Ω) ◦R(L(Ω)
ηX ).

Now, we have just seen that this morphism is the inverse of f∗, and as { }T (X) = iX ◦ f∗,
it follows that T (ηX) ◦ L(εT (X)) = idT (X).

This concludes the proof of Theorem 3.4.
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In order to prevent a few wild conjectures let us mention one or two examples showing what

is not the case.

Example 1. Let

C =
g

//
oo

f
1

g◦f

��

1

id1

ZZ 0

id0

ZZ{ } and B = oo
f

1

id1

ZZ 0

id0

ZZ{ }

and let

L : SetsC
op

−→ SetsB
op

be the functor induced by the inclusion B C,� � // then L is faithful and preserves the sub-

object classifier but not universal quantification. L has a left and a right adjoint, but L is not

a logical functor.

Example 2. Let G be a topological group and let

I : BG BG
� � //

be the full subcategory of discrete continuous representations of G (the underlying group of G)

in Sets. I. e. if (X, ·) ∈ |BG| then (X, ·) ∈ |BG| iff ∀x ∈ X the isotropic group

Gx = {g ∈ G|x · g = x}

is an open subgroup of G. BG is a coreflective subcategory of BG and the coreflector is the

direct image functor of a geometric functor on elementary Boolean topoi. The inclusion functor

I preserves the subobject classifier and universal quantification. It is logic iff it has a left adjoint

iff there is a smallest open set containing the unit.

If f : G −→ H is a map of topological groups, then the induced geometric functor

BG BH
oo

f∗

BG BH
f∗

//

is an essential functor iff the the image in H of any open subgroup of G is contained in a

smallest open subgroup of H. In case G and H are Boolean groups, i. e. if the topologies are

totally disconnected compact Hausdorffian, then the above condition is equivalent to either f

preserves open subgroups or f(G) is an open subgroup of H or the index [f(G) : H] is finite.

Example 3. Let C be the small category from example 1, and consider

SetsC
op

Sets
oo Γ

SetsC
op

Sets
∆

//
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where ∆ a Γ. In this particular case ∆ is both left and right adjoint to Γ. The topology

generated by ∆ a Γ is the double negation. Thus we have an example of a “finite” topos

defined over Sets such that its centre exists and such that the centre is not closed.

This answers in the negative the first question of [1] (SLN 270) Exposé VI 8.4.7.



Appendix A

Transfinite Induction in Elementary Topoi

In this appendix we shall study the classical concept of transfinite induction in the context

of elementary topoi. Officially we establish the recursion theorem, but we believe that the

importance of this work lies in the method of proof rather than in the results themselves. In

fact the question we shall investigate is that of constructing a morphism f : A −→ X in an

elementary topos E, such that f is the solution of some problem Q. We may think of f as

being described by its graph Γf : A // // A × X which means that what we are looking for

is a relation R from A to X. We know, however, that such constructions can be effected by

the fixpoint theorem, i.e. we must study Q in order to obtain the idea of an approximative

relational solution. Having done this we take the internal intersection of all such, and by the

fixpoint theorem we therefore have a smallest relational solution R // // A × X. In order to

verify that R is a graph we start by checking if R −→ A is a monomorphism, i.e. if R is a

partial graph. Once more we find that the elementary topos supplies the method: Consider the

partial graph generated by R. This is done by taking the unique existentiation of R −→ A and

restricting R to this subobject. Thus we only need to check that this subrelation is a fixpoint

for the internal functor defining R to get that the two relations agree, i.e. R is a partial graph.

Finally to see that the relation is globally defined we must once more study the setting and the

universal property described in Q to see that this is actually the case.

The recursion theorem established below can now be seen as a mere example of this general

method of constructing a morphism.

Let E be a fixed elementary topos. We shal use the partial graph operator in E and some

of its fundamental properties which we record below for reference.

Recall the construction of ∼ in E. Let

1) X̃ //
eX // P (X)

{ }P (X)◦P ({ }X)
//

idP (X)

// P (X)

be an equalizer diagram. Notice that { }P (X) ◦ P ({ }X) 6 idP (X) and as { }P (X) ◦ P ({ }X) is

idempotent, it follows that the equalizer 1) is preserved by any functor. As { }X ◦ { }P (X) ◦
P ({ }X) = { }X we get the following commutative square (and pull back):

64
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X X
idX

//

X̃

X

OO

ηX

OO

X̃ P (X)//
eX // P (X)

X

OO

{ }X

OO

Applying ( )A to 1) we get (up to isomorphism) the idempotent equalizer diagram

2) X̃A //
gA,X

// P (A×X)
uA,X

//

idP (A×X)

// P (A×X)

where uA,X is characterized by the following elementary description:

J X
y

//

I

J

OO

i

I A×X
〈a,x〉

// A×X

X

I

P (A×X)

R

77
P (A×X) P (A×X)

uA,X
//

∀I ∈ |E| ∀R ∈ P (A×X) ∀a ∈ A ∀x ∈ X : 〈a, x〉 ∈ R ◦ uA,X iff

〈a, x〉 ∈ R and ∀J ∈ |E| ∀i ∈ I ∀y ∈ X : 〈i ◦ a, y〉 ∈ i ◦R implies that y = i ◦ x.

P1. gA,X ◦ ∃p0
= (domX)A : X̃A −→ P (A), where domX = chX̃(ηX) : X̃ −→ Ω

P2. IfR : I −→ P (A×X) thenR is a graph (i.e. R factors through ΓA,X : XA // // P (A×X))

iffR is a partial graph (i. e. R◦uA,N = R) andR is globally defined (i.e. R ◦ ∃p0
= !I ◦ ptrueAq)

P3. If R,S ∈ HomE(I, P (A×X)) and S 6 R ◦ uA,X then S = S ◦ uA,X ,

i.e. uA,X◦ ↓segP (A×X) ◦ ∃uA,X = uA,X◦ ↓segP (A×X).

P4. If R,S, T ∈ HomE(I, P (A ×X)) and R 6 T ◦ uA,X , S 6 T and R ◦ ∃p0
= S ◦ ∃p0

then

R = S.

Let s : A −→ P (A) be a relation in E. We shall think of s as a strict ↓-segment, but we

shall not yet make any assumptions on s. If X is any object in E we consider the representor

A ↓X of partial morphisms from A to X defined on the initial segment of s.

A P (A)
s //

A ↓X

A

pX

��

A ↓X X̃AsS // X̃A

P (A)

(domX)A

��

P.B.

If f ∈ HomE(A,X) consider the lifting ẑf : P (A)×A // X̃ of f constructed out of the

universal property of X̃, making the diagram
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εA X

P (A)×A

εA

OO

OO

P (A)×A X̃
ẑf

// X̃

X

OO

ηX

OO

εA A// A X
f

//

into a pull back. As ẑf ◦ domX = evA,Ω we have that zf ◦ (domX)A = idP (A).

A P (A)
s //

A ↓X

A

pX

��

A ↓X X̃AsX // X̃A

P (A)

(domX)A

��

P.B.

A ↓X X̃AsX //

A

A ↓X

��

f�

��

A P (A)
s // P (A)

X̃A

��

zf

��

3)

A

X

f

yy
A ↓XX

hoo

where f � ◦ sX = s ◦ zf and f � ◦ pX = idA . Observe that the square 3) is a pull back.

Definition A.1. The relation s : A −→ P (A) is said to satisfy the principle of transfinite

induction iff ∀X ∈ |E| ∀h : A ↓ X −→ X ∃! f : A −→ X such that f� ◦ h = f .

If f ∈ HomE(A,X) we readily see that

4) zf ◦ gA,X = ∃Γf : P (A) // // P (A×X)

This leads to the following special cases of the principle of transfinite induction.

T1. ∀X ∈ |E| ∀a : P (A×X)×A −→ X ∃! f : A −→ X such that

X P (A×X)×Aoo a

A

X

f

��

A P (A)×A//
〈s,idA〉

// P (A)×A

P (A×X)×A

∃Γf
×idA

��

is commutative.

T2. ∀X ∈ |E| ∀b : P (X) −→ X ∃! f : A −→ X such that

X P (X)oo b

A

X

f

��

A P (A)// s // P (A)

P (X)

∃f

��

is commutative.

Indeed, if s satisfies the principle of transfinite induction we let h ∈ HomE(A ↓ X,X) be

the morphism 〈sX ◦ gA,X , pX〉 ◦ a then f� ◦ h = f� ◦ 〈sX ◦ gA,X , pX〉 ◦ a = 〈s ◦ ∃Γf , idA〉 ◦ a, i.e.

T1 is satisfied.
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If T1 is valid we get T2 by letting a = p0 ◦ ∃p1 ◦ b.

What can be said on the uniqueness of the solution of a recursion problem?

Suppose f, g ∈ HomE(A,X) and h ∈ HomE(A ↓ X,X) such that f = f� ◦ h and g = g� ◦ h.

Let

N //
i //A

f
//

g
//X

be the equalizer diagram for f and g, and consider the following pull back diagram:

N P (N)

A

N

OO

i

OO

A P (A)
s // P (A)

P (N)

OO

∃i

OO

AN

A

a

II

AN

P (N)

sN

33

We claim that AN 6 N , i.e. a ◦ f = a ◦ g.

i) a ◦ f� ◦ pX = a = a ◦ g� ◦ pX .

ii) a ◦ f� ◦ sX ◦ gA,X = a ◦ s ◦ zf ◦ gA,X = a ◦ s ◦ ∃Γf = sN ◦ ∃i ◦ ∃Γf =

sN ◦ ∃i ◦ ∃Γg = a ◦ s ◦ ∃Γg = a ◦ s ◦ zg ◦ gA,X = a ◦ g� ◦ sX ◦ gA,X

and as gA,X is monic it follows that

a ◦ f� ◦ sX = a ◦ g� ◦ sX

iii) From i) and ii) we get that a ◦ f� = a ◦ g�, and therefore

a ◦ f = a ◦ f� ◦ h = a ◦ g� ◦ h = a ◦ g

Observe that stated internally the inequality AN 6 N reads

5) pchA(i)q◦ ↓segP (A) ◦ P (s) 6 pchA(i)q.

Definition A.2. The relation s : A −→ P (A) is said to be inductive iff the internal functor

↓segP (A) ◦ P (s) on P (A) has a unique fixpoint (namely ptrueAq) defined over 1.

Remark. From the proof of the fixpoint theorem we know that the inequality 5) gives

rise to a subobject j : N // // A such that pchA(j)q◦ ↓segP (A) ◦ P (s) = pchA(j)q and such

that pchA(j)q 6 pchA(i)q. Thus we conclude that inductive relations satisfy the uniqueness

property of the transfinite induction property.

Conversely, assume that s ∈ HomE(A,P (A)) satisfies the uniqueness part of T2, and let

m ∈ HomE(A,Ω) such that pmq = pmq◦ ↓segP (A) ◦ P (s). From this it follows that pmq =

pmq◦ ↓segP (A) ◦ P (s) = pidΩq ◦ P (m)◦ ↓segP (A) ◦ P (s) = pidΩq◦ ↓segP (Ω) ◦ P (∃m) ◦ P (s) =

pchΩ(true)q◦ ↓segP (Ω) ◦ P (s ◦ ∃m) = pchP (Ω)(∃true)q ◦ P (s ◦ ∃m) = ps ◦ ∃m ◦ chP (Ω)(∃true)q,
i.e. m = s ◦ ∃m ◦ chP (Ω)(∃true). This proves that s is inductive.
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Theorem A.1. Let s : A −→ P (A) be an inductive relation in an elementary topos E, then s

satisfies the principle of transfinite induction

Proof. Let X ∈ |E| and h ∈ HomE(A ↓ X,X) be given. We have seen that there is at most one

f ∈ HomE(A,X) such that f� ◦ h = f . We shall now give the explicit construction of this f .

Consider the internal functor

F = P (A×X)
↓segP (A×X)

// PP (A×X)
P (sX◦gA,X)

// P (A ↓ X)
∃〈pX,h〉 // P (A×X)

which to a relation R from A to X assigns to any partial morphism t from A to X whose

domain is an initial segment (a)s of s and whose graph is contained in R the value (a, (t)h).

Explicitly,

I A×X
〈a,x〉

//

J

I

e

����

J A ↓ Xt // A ↓ X

A×X

〈pX ,h〉

��

A ↓ X X̃AsX // X̃A P (A×X)
gA,X

//

I

P (A×X)

R

��

P (A×X) P (A×X)
F //

∀I ∈ |E| ∀R ∈ P (A×X) ∀a ∈ A ∀x ∈ X : 〈a, x〉 ∈ R ◦ F iff

∃J ∈ |E|, ∃e ∈ I (epi), ∃t ∈ A ↓ X such that

t ◦ pX = e ◦ a, t ◦ h = e ◦ x and t ◦ sX ◦ gA,X 6 e ◦R.

By the fixpoint theorem we know that F has a smallest such fixpoint (defined over 1) B :

1 −→ P (A×X). We claim that B resolves our problem, i.e. that there exists f ∈ HomE(A,X)

such that B = pfq ◦ ΓA,X and such that f� ◦ h = f .

Suppose that f ∈ HomE(A,X). Let us compute pfq ◦ ΓA,X ◦ F .

pfq ◦ ΓA,X ◦ F = pfq ◦ ΓA,X◦ ↓segP (A×X) ◦ P (gA,X) ◦ P (sX) ◦ ∃〈pX ,h〉 =

ptrueAq ◦ ∃Γf ◦ ↓segP (A×X) ◦ P (gA,X) ◦ P (sX) ◦ ∃〈pX ,h〉 = (i)

ptrueAq◦ ↓segP (A) ◦ ∃∃Γf
◦ P (gA,X) ◦ P (sX) ◦ ∃〈pX ,h〉 = (ii)

ptrueAq◦ ↓segP (A) ◦ ∃zf ◦ P (sX) ◦ ∃〈pX ,h〉 = (iii)

ptrueAq◦ ↓segP (A) ◦ P (s) ◦ ∃f� ◦ ∃〈pX ,h〉 = ptrueAq ◦ ∃f� ◦ ∃〈pX ,h〉 =

ptrueAq ◦ ∃Γf�◦h
= pf� ◦ hq ◦ ΓA,X .

(i) Internal existential quantification preserves ↓-segments. (cf. chapter 2 s))

(ii) The internal Beck condition applied to the pull back diagram defined by 4).

(iii) The internal Beck condition applied to 3).
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Thus pfq◦ΓA,X ◦F = pf�◦hq◦ΓA,X showing that the fixpoints for F of the form pfq◦ΓA,X
are exactly the solutions of our problem.

Sublemma A.1.

If B ∈ HomE(I, P (A×X)) and B ◦ F = B then

B ◦ uA,X ◦ F 6 B ◦ uA,X .

Sublemma A.2.

If B ∈ HomE(I, P (A×X)) then

B ◦ uA,X ◦ F ◦ ∃p0
= B ◦ uA,X ◦ ∃p0

◦ ↓segP (A) ◦ P (s).

From Sublemma A.1 we get that the smallest fixpoint B for F is in fact a partial graph, i.e.

B = B ◦ uA,X = B ◦F , and substituting this in Sublemma A.2 yields that B ◦ ∃p0 is a fixpoint

for ↓segP (A) ◦ P (s), i.e. B ◦ ∃p0
= ptrueAq as s is inductive. Thus B is both a partial graph

and globally defined. It follows from P2 that B = pfq ◦ ΓA,X for some (uniquely determined)

f .

This concludes the proof of Theorem A.1.

Proof of Sublemma A.1.

I1 J
j

//

A×X

I1

OO

〈j◦a,y〉

A×X II

J

OO

i

J A×X
〈a,x〉

//

I

J

OO

i

I P (A×X)
B // P (A×X)

A×X

J1 K
k

//

I1

J1

OOOO

e1

I1 J
j

J

K

OOOO

e

K1 A ↓ X
t1

//

J1

K1

OOOO

f1

J1 K
k

// K

A ↓ X

t

��

A ↓ X

A×X

〈pX ,h〉

EE

A ↓ X P (A×X)
sX◦gA,X

//

Let I ∈ |E|, B ∈ P (A×X) such that B ◦ F = B. We claim that B ◦ uA,X ◦ F 6 B ◦ uA,X .

Observe that B ◦ uA,X ◦ F 6 B ◦ F = B as uA,X 6 idP (A×X).

Let J ∈ |E|, i ∈ I, a ∈ A, x ∈ X such that 〈a, x〉 ∈ i ◦B ◦ uA,X ◦F , and let I1 ∈ |E|, j ∈ J ,

y ∈ X such that 〈j ◦ a, y〉 ∈ j ◦ i ◦B = j ◦ i ◦B ◦ F .

We claim that y = i ◦ x.

From 〈a, x〉 ∈ i ◦ B ◦ uA,X ◦ F we get ∃K ∈ |E|, ∃e ∈ J (epi), ∃t ∈ A ↓ X such that

t ◦ pX = e ◦ a and t ◦ h = e ◦ x and t ◦ sX ◦ gA,X 6 e ◦ i ◦B ◦ uA,X .

Let e1 ◦ j = k ◦ e be a pull back. Then e1 is epic, and e1 ◦ 〈j ◦ a, y〉 ∈ e1 ◦ j ◦ i ◦B ◦ F from

which we get that ∃K1 ∈ |E|, ∃f1 ∈ J1 (epi), ∃t1 ∈ A ↓ X such that t1 ◦ pX = f1 ◦ e1 ◦ j ◦ a,

t1 ◦ h = f1 ◦ e1 ◦ y and t1 ◦ sX ◦ gA,X 6 f1 ◦ e1 ◦ j ◦ i ◦B.

Now
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i) (f1 ◦ k ◦ t) ◦ sX ◦ gA,X 6 f1 ◦ k ◦ e ◦ i ◦B ◦ uA,X = f1 ◦ e1 ◦ j ◦ i ◦B ◦ uA,X and

ii) t1 ◦ sX ◦ gA,X 6 f1 ◦ e1 ◦ j ◦ i ◦B and as

(f1 ◦ k ◦ t) ◦ pX = f1 ◦ k ◦ e ◦ a = f1 ◦ e1 ◦ j ◦ a = t1 ◦ pX ( =
def.

a )

it follows that

iii) (f1 ◦ k ◦ t ◦ sX ◦ gA,X) ◦ ∃p0
= a ◦ s = (t1 ◦ sX ◦ gA,X) ◦ ∃p0

It follows from P4 that f1◦k◦t◦sX ◦gA,X = t1◦sX ◦gA,X , and therefore f1◦k◦t◦sX = t1◦sX
as gA,X is monic. But t1 ◦ pX = a = (f1 ◦ k ◦ t) ◦ pX and t1 ◦ sX = (f1 ◦ k ◦ t) ◦ sX whence

f1 ◦ k ◦ t = t1, and so f1 ◦ e1 ◦ y = t1 ◦ h = f1 ◦ k ◦ t ◦ h = f1 ◦ k ◦ e ◦ x = f1 ◦ e1 ◦ j ◦ x from

which we get that y = j ◦ x as f1 ◦ e1 is epic.

This proves Sublemma A.1.

Proof of Sublemma A.2. Let B ∈ HomE(I, P (A × X)), then there exists exactly one B ∈
HomE(I, P (XA)) such that B ◦ uA,X◦ ↓segP (A×X) = B ◦ ∃gA,X . This follows from P3 and the

fact that gA,X is the equalizer of uA,X and idP (A×X), and as uA,X is idempotent. Now

B ◦ uA,X ◦ F ◦ ∃p0
= B ◦ uA,X◦ ↓segP (A×X) ◦ P (gA,X) ◦ P (sX) ◦ ∃〈pX ,h〉 ◦ ∃p0

=

B ◦ uA,X◦ ↓segP (A×X) ◦ P (gA,X) ◦ P (sX) ◦ ∃pX =

B ◦ ∃gA,X ◦ P (gA,X) ◦ P (sX) ◦ ∃pX = B ◦ P (sX) ◦ ∃pX = B ◦ ∃(domX)A ◦ P (s) =

B ◦ ∃gA,X ◦ ∃∃p0
◦ P (s) = B ◦ uA,X◦ ↓segP (A×X) ◦ ∃∃p0

◦ P (s) =

B ◦ uA,X ◦ ∃p0◦ ↓segP (A) ◦ P (s)

This proves Sublemma A.2.

Theorem A.2. Inductive relations are preserved by the inverse image functor of a geometric

functor on elementary topoi.

Proof. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor of elementary topoi, and let s ∈ HomE(A,P (A)) be an inductive relation

in E. We claim that the relation L(s) ◦ L̂A ∈ HomE0
(L(A), PL(A)) is inductive.

If X ∈ |E0| and b ∈ HomE0
(P (X), X) we consider the diagram

LR(X) LPR(X)oo
L(c)

L(A)

LR(X)

L(f)

��

L(A) LP (A)
L(s)

// LP (A)

LPR(X)

L(∃f )

��

LPR(X) PLR(X)
L̂R(X)

//

LP (A)

LPR(X)

L(∃f )

��

LP (A) PL(A)
L̂A // PL(A)

PLR(X)

∃L(f)

��

X

LR(X)

X

vX

��

LR(X) LPR(X)oo
L(c)

LPR(X)

P (X).

LPR(X)LPR(X) PLR(X)
L̂R(X)

// PLR(X)

P (X).

∃vX

��

X P (X).oo b

1 2

3
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where c ∈ HomE(PR(X), R(X)) is the unique morphism in E making 3 commutative, and

f ∈ HomE(A,R(X)) such that s ◦ ∃f ◦ c = f . Finally, 2 is commutative as L preserves epi-

mono-factorization and is left exact. This proves that the square is commutative.

Now, any morphism from L(A) to X is of the form L(g) ◦ vX where g ∈ HomE(A,R(X)),

and if L(g) ◦ vX = L(s) ◦ L̂A ◦ ∃L(g)◦vX ◦ b, then s ◦ ∃g ◦ c = g as 2 is commutative for any

element in HomE(A,R(X)) and 3 is commutative by definition of c. As s is inductive we have

that f = g.

This proves that L(s) ◦ L̂A is inductive and concludes the proof of Theorem A.2.

Theorem A.2 allows us to give the following characterization of inductive relations:

If s ∈ HomE(A,P (A)) then s is inductive iff the following diagram is a pull back.

1

P (A)

1

OO

ptrueAq

OO

P (A) P (A)× P (A)
〈↓seg◦P (s),idP (A)〉

// P (A)× P (A)

1

P (A)× P (A)P (A)× P (A) Ω
↑ŝegA // Ω

1

OO

true

OO

1 1
id1 //

(I)

Indeed, we have seen that s is inductive iff (I) is a pull back for global sections.

By Theorem A.2 we know that the functors ( ) × Z : E // E/Z preserve inductive

relations, and as they are logical they preserve the diagram (I). But these facts imply that (I)

is a pull back in E.

Corollary A.1. Logical functors on elementary topoi preserve inductive relations.

Remarks.

i). Inductive relations are irreflexive and acyclic (indeed, the transitive hull of an inductive

relation is inductive, and therefore inductive).

ii). In any elementary topos we have the notion of a well ordered object, i.e. an internally

ordered object such that any non-empty subobject of the object has a smallest element.

In case we are in an elementary Boolean topos the classical proof that a well ordering is in

fact a linear ordering whose strict ↓-segment satisfies the principle of transfinite induction

is easily seen to be valid, (There is a constructive proof of this fact!). As an inverse image

functor preserves inductive relations and linearity of internal orderings, it follows that in

the case of elementary Boolean topoi an inverse image functor preserves well orderings.

This result was proved by W. Mitchell in the case of elementary Boolean topoi in which

support splits (BT’) by another method, and conjectured to be valid for all elementary

Boolean topoi (BT) [20].



Appendix B

Impredicative Constructions in Elementary Topoi

This appendix is intended to be an example of how to derive information from impredicative

constructions in elementary topoi. Formally, however, it supplies the proofs of two theorems

which were announced in ”Some Topos Theoretic Concepts of Finiteness”, [8], to which we

refer the reader for additional information.

Let us first give an example from the category of sets explaining what we mean by predica-

tive / impredicative.

The predicative approach.

Let G be a group and let A be a subset of G, then we know that the subgroup A of G

generated by A is given by

A = {
n∏
i=1

ai|ai ∈ A ∪A−1, n ∈ N}.

Assume that A is a commutative subset of G, i.e. ∀a, b ∈ A : a · b = b · a. We see, by

induction on n ∈ N, that A is a commutative subgroup of G.

The impredicative approach.

Consider the same problem once more. A can be described by

A =
⋂
{H ⊆ G|H is a subgroup of G and A ⊆ H}.

Consider the centralizer C(A) = {b ∈ G|∀a ∈ A : a · b = b · a} of A. C(A) is a subgroup of

G, and A is contained in C(A) iff A is a commutative subset of G. Now A ⊆ C(A) ∩ CC(A),

but C(A) ∩ CC(A) is a commutative subgroup of G and as it contains A it must contain

the smallest subgroup of G containing A. I.e. A ⊆ C(A) ∩ CC(A). It follows that A is a

commutative subgroup of G.

We leave to the reader to verify for himself that the first proof can be lifted to any elementary

topos with a natural number object, whereas the second proof can be lifted to all elementary

topoi.

72
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Let E be a fixed elementary topos. By the fixpoint theorem we know how to perform im-

predicative constructions (such as A) in E. Now the very construction is fundamental, but in

itself it is not enough supply the proof of the problem (such as the commutativity of A) for

which the construction was performed. Fortunately, however, the fixpoint theorem yields the

additional information that we have a smallest fixpoint, and it is the understanding of this fact

that allows us to draw conclusions (such as the commutativity of A).

We shall now give a rather general example of how these ideas can be applied in E.

From Manes’ theorem for elementary topoi we know that the algebras for the internal power

monad

E

on E are the complete lattices in E. So, what is the “finitary” part of

E

? Explicitly,

given X in E what is the subobject of P (X) generated by { }X , pfalseXq and ∨P (X)?

In the category of sets we know from W. Sierpiński that the subset asked for is the set of all

“finite” subsets of X, where “finite” refers to the lattice theoretic concept of finiteness which

serves mathematics in the topological formulation of compactness.

Given X in E let kX : K(X) // // P (X) be the smallest subobject of P (X) which contains

{ }X , pfalseXq and ∨P (X), i. e. such that

1 K(X)//
fX

// K(X) Xoo
κX
oo

P (X)

1

??

pfalseXq

??

P (X)

K(X)

OO

kX

OO

P (X)

X

__

{ }X

__

K(X)×K(X) K(X)
∨K(X)

//

P (X)× P (X)

K(X)×K(X)

OO

kX×kX

OO

P (X)× P (X) P (X)
∨P (X)

// P (X)

K(X)

OO

kX

OO

the indicated factorizations exist.

The existence of K(X) is guaranteed by the fixpoint theorem. Explicitly by applying the

following internal functors on PP (X):

(∗)


“adding the singletons” =〈idPP (X), !PP (X) ◦ psXq〉 ◦ ∨PP (X)

“adding false” =〈idPP (X), !PP (X) ◦ pfalseXq ◦ { }P (X)〉 ◦ ∨PP (X)

“closing up under binary union” =∆PP (X) ◦ p̃P (X),P (X) ◦ ∃∨P (X)
.

A fixpoint for (∗) is a subobject n : N // // P (X) such that

1 N// // N Xoo oo

P (X)

1

??

pfalseXq

??

P (X)

N

OO

n

OO

P (X)

X

__

{ }X

__

N ×N N//

P (X)× P (X)

N ×N

OO

n×n

OO

P (X)× P (X) P (X)
∨P (X)

// P (X)

N

OO

n

OO

the indicated factorization exist. The fixpoint theorem says that there is a smallest such sub-

object, namely kX .

In a situation like this we have the following two principles:
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The mapping principle. If f ∈ HomE(P (X), A) and i : B // //A (monic) are morphisms

in E and if j : (B)f−1 // // P (X) is a fixpoint for (∗), then there exists a morphism f ∈
HomE(K(X), B) such that f ◦ i = kX ◦ f .

(B)f−1 B//

P (X)

(B)f−1

OO

j

OO

P (X) A
f

// A

B

OO

i

OO

K(X)

P (X)

DD

kX

DD

K(X)

(B)f−1

55

K(X)

B

f

11

P.B.

The uniqueness principle. If g, h ∈ HomE(K(X), C) and if i = eq(g, h) // // K(X) then

g = h provided i ◦ kX is a fixpoint for (∗).

eq(g, h) K(X)// i // K(X) C.
g

//
K(X) C.

h
//K(X)

P (X)

OO

kX

OO

If f ∈ HomE(X,Y ) then as pfalseXq◦∃f = pfalseY q, { }X ◦∃f = f ◦{ }Y and ∨P (X)◦∃f =

∃f × ∃f ◦ ∨P (Y ) we get from the mapping principle (applied to ∃f and kX) that there exists a

factorization:

K(X) K(Y )
K(f)

//

P (X)

K(X)

OO

kX

OO

P (X) P (Y )
∃f

// P (Y )

K(Y )

OO

kY

OO

It follows that the assignment X 7→ K(X) and f 7→ K(f) defines a functor

K : E −→ E that

κ = {κX : X // //K(X)}X∈|E| and

k = {kX : K(X) // // P (X)}X∈|E|

define pointwise monic natural transformations, κ : idE ⇒ K, k : K ⇒ ∃ and κ ◦ k = { }.

Consider ∃kX ◦
⋃
X . As this internal functor has a right adjoint, namely ↓segP (X)◦P (kX) and

as { }K(X) ◦∃kX ◦
⋃
X = kX we get from the mapping principle that there exists a factorization:

KK(X)

PK(X)

KK(X)

OO

kK(X)

OO

PK(X) PP (X)
∃kX // PP (X)

K(X).

PP (X)PP (X) P (X)

⋃
X // P (X)

K(X).

OO

kX

OO

KK(X) K(X).
µX //
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As k is pointwise monic and natural it follows that

µ = {µX : KK(X) −→ K(X)}X∈|E|

defines a natural transformation µ : KK ⇒ K such that K = (K,κ.µ) is a monad on E and

such that k : K⇒

E

is a transformation of monads.

Let C0(E) be the category of upper semilattices in E with smallest global section, and right

exact morphisms.

Proposition B.1. C0(E) is isomorphic to EK.

Proof. The functor I : EK −→ C0(E) is defined as follows: I(A, ξ : K(A)→ A) = (A,∨, 0),

I(f) = f where ∨ = κA × κA ◦ ∨P (A) ◦ ξ and 0 = fA ◦ ξ.

The functor J : C0(E) −→ EK is constructed in the following way.

If (A,∨, 0) ∈ |C0(E| we construct the extension of those subobjects of A which have a sup

in A as the inverse image of ↑segA along ↑segP (A) ◦P (↓segA). As this extension is readily seen

to be a fixpoint for (∗), by the mapping principle we get the following factorization:

K(A)

P (A)

K(A)

OO

kA

OO

P (A) PP (A)
↑segP (A)

// PP (A)

A

PP (A)PP (A) P (X)
P (↓segA)

// P (X)

A

OO

kX

OO

K(A) A
ξ∨ //

This leads to the definition J(A,∨, 0) = (A, ξ∨), J(f) = f .

The fact that I is a well defined functor is a purely diagrammatic proof, recalling that ∨ is

to be idempotent, associative and commutative. 0 is zero as pfalseAq is zero. Morphisms are

obvious.

The fact that J is a well defined functor follows as ξ∨ is constructed out of “the sup of

subobjects having a sup”, and the uniqueness principle applied to the appropriate morphisms.

Likewise for morphisms.

The passage (A,∨, 0) 7→ (A, ξ∨) 7→ (A,∨, 0) is the identity as ξ∨ is the restriction of sups.

The passage (A, ξ) 7→ (A,∨, 0) 7→ (A, ξ∨) is the identity by the uniqueness principle.

Recall that the cotensorial strength

λ = {λX,Y : P (Y X) // P (Y )X}(X,Y )∈|E|×|E|
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for

E

is a pointwise co-continuous internal functor preserving singletons in the following sense

{ }XY ◦ λX,Y = ({ }Y )X . Thus from the mapping principle (applied to λX,Y and (kY )X) we

get a new factorization:

K(Y X) K(Y )X
λX,Y

//

P (Y X)

K(Y X)

OO

kYX

OO

P (Y X) P (Y )X
λX,Y

// P (Y )X

K(Y )X

OO

(kY )X

OO

λ extends to a cotensorial strength for K, and as the associated tensorial strengths for K

commute with k, and

E

is symmetric, we get that K is a symmetric monoidal sub- (via k)

monad of

E

In particular we have a monoidal transformation p̈ making the following diagram

commutative:

K(X)×K(Y ) K(X × Y )
p̈X,Y

//

P (X)× P (Y )

K(X)×K(Y )

OO

kX×kY

OO

P (X)× P (Y ) P (X × Y )
p̃X,Y

// P (X × Y )

K(X × Y )

OO

kX×Y

OO

Definition B.1 (Sierpiński [23]). An object X in E is said to be K-finite iff ptrueXq belongs

to K(X), i.e. iff there is a factorization:

1 K(X)//
tX

//

P (X)

1

99

ptrueXq

99

P (X)

K(X)

OO

kX

OO

(Actually in Sierpiński’s original definition on page 106 in [23] finite sets are non-empty.)

The following remarks are contained in [8], though the proofs given here are of another

nature.

1). The initial object ∅ is K-finite.

Proof. P (∅) is the terminal object, whence ptrue∅q = pfalse∅q.

2). The terminal object 1 is K-finite, and K(1) = 2.

Proof. { }1 = ptrueq. 2 // // Ω is closed under binary union and generated by true and

false.

3). If X is K-finite and f : X // // Y is epic, then Y is K-finite.

Proof. As ptrueXq ◦ ∃f = ptrueY q as f is epic, we have that tX ◦K(f) is the proof that

Y is K-finite.

4). If X and Y are K-finite, then X × Y is K-finite.



APPENDIX B. IMPREDICATIVE CONSTRUCTIONS IN ELEMENTARY TOPOI 77

Proof. As 〈ptrueXq, ptrueY q〉 ◦ p̃X,Y = ptrueX×Y q we have that 〈tX , tY 〉 ◦ p̈X,Y is the

proof that X × Y is K-finite.

5). If K(X) is K-finite then X is K-finite.

Proof. As ∃κX ◦ ∃kX ◦
⋃
X = idP (X) we have that

ptrueXq = ptrueK(X)q ◦ ∃kX ◦
⋃
X , and therefore tK(X) ◦ µX is the proof that X is

K-finite.

6). We leave to the reader the pleasure of discovering a proof of the fact that the coproduct

of two objects in E is K-finite iff each of the objects is K-finite. (There is an alternative

proof in [8]).

7). As a consequence of 2) and 6) we see that K(1) = 2 = 1 + 1 is K-finite.

As for the proofs of 1) - 7), they are only given here in order to illustrate how to derive

information from the impredicative construction K. In [8], it is shown that K-finiteness has a

predicative description, and as this description is valid in any elementary topos, it is clear that

we should profit from this description. (Cf. Theorem B.2 below).

Theorem B.1. The inverse image functor of a geometric functor on elementary topoi preserves

K-finite objects.

Proof. Let

E E0

L //

E E0oo
R

, L a R

be a geometric functor of elementary topoi.

If X ∈ |E| we claim that there is a morphism lX from LK(X) to KL(X) such that

LK(X) KL(X)
lX //

LP (X)

LK(X)

OO

L(kX)

OO

LP (X) PL(X)
L̂X // PL(X)

KL(X)

OO

kL(X)

OO

is commutative.

Recall that the adjoint of L̂X , tP (X) ◦ R(L̂X) : P (X) // RPL(X), is an internal

functor having a right adjoint. As { }X ◦ tP (X) ◦ R(L̂X) = tX ◦ R({ }X), it follows from the

mapping principle (applied to tP (X) ◦R(L̂X) and R(kL(X))) that there exists a factorization:

K(X) RKL(X)//

P (X)

K(X)

OO

kX

OO

P (X) RPL(X)
tP (X)◦R(L̂X)

// RPL(X)

RKL(X)

OO

R(kL(X))

OO

This proves the assertion on the existence of lX .
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As L(ptrueXq) ◦ L̂X = ptrueL(X)q, it follows that if X is K-finite then L(tX) ◦ lX is the

proof that L(X) is K-finite.

This concludes the proof of Theorem B.1.

Remark. In the notation of Theorem B.1 we have that lX is an epimorphism. Indeed, as

L({ }X) ◦ L̂X = { }L(X), and as lX is right exact, it follow that the image of lX considered as

a subobject of PL(X) is a fixpoint for (∗). This shows that lX is epic. If L preserves universal

quantification then lX is iso.

The final section contains a number of terms undefined in this work. They are all taken

from [8] to which we refer the reader for the definitions and theorems applied.

Let B be a complete Heyting algebra in E, and assume that B is an algebraic lattice in E,

and let s : S(B) // //B be the extension of the intranscessible elements in B.

Consider the pull back diagram:

Q

B

Q

OO

i

OO

B P (B)//
↓segB // P (B)

KS(B)

P (B)P (B) PS(B)
P (s)

// PS(B)

KS(B)

OO

kS(B)

OO

Q KS(B)//

P.B.

We claim that the subobject i : Q // //B is a C0(E)-subobject of B, and that the exten-

sion iB : T (B) // //B of the atoms of B is contained in Q.

1). Let 0 : 1 // // B be the smallest global section in B. As 0 is intranscessible we have

the following commutative diagram (pull back)

1 1
id1 //

S(B)

1

OO

0

OO

S(B) B// s // B

1

OO

0

OO

Now 0 ◦ ↓segB ◦ P (s) = 0 ◦ { }B ◦ P (s) = { }1 ◦ ∃0 ◦ P (s) = { }1 ◦ ∃0 = 0 ◦ { }S(B). (Using

0 a !B , and the internal Beck condition applied to the square). It follows that 0 factors through

Q, i.e. we have a commutative diagram:

1 Q// //

B

1

??

0

??

B

Q

OO

i

OO

2). Consider the following diagram:
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B ×BB ×B P (B)× P (B)//
↓segB×↓segB // P (B)× P (B)

P (B ×B) P (S(B)× S(B))
P (s×s)

//

P (B)× P (B)

P (B ×B)

p̃B,B

��

P (B)× P (B) PS(B)× PS(B)
P (s)×P (s)

// PS(B)× PS(B)

P (S(B)× S(B))

p̃S(B),S(B)

��

B ×B

B

∨

��

B P (B)
↓segB

//B

P (B ×B)P (B ×B)

P (B)

∃∨

��

P (B) PS(B)
P (s)

//

P (B ×B)

P (B)

∃∨

��

P (B ×B) P (S(B)× S(B))
P (s×s)

// P (S(B)× S(B))

PS(B)

∃∨

��

I

II

>

The square I is commutative as B is a distributive lattice. The square II is commutative by

the naturality of p̃ with respect to P . The inequality in the last square follows from the fact

that S(B) is an upper-sub-semilattice of B.

We claim that the outer square is commutative.

Let a0, a1 be elements in B and let c be an intranscessible element in B such that c 6 a0∨a1.

The trick is to notice that ci = c∧ai is the sup of a family Ai of intranscessible elements below

ai. It follows, by distributivity, that c is the sup of A0∨A1 as c is intranscessible.

This shows the asserted commutativity. It follows that we have a commutative diagram

Q×Q Q//

B ×B

Q×Q

OO

i×i

OO

B ×B B
∨ // B

Q

OO

i

OO

3). Let a : 1 −→ B be an atom in B (defined over 1).

As (a) ↓segB ' Ω ' P (1), we have that S((a) ↓segB) ' SP (1) = K(1) = 2, which is K-finite.

Thus a factors through Q.

Applying this argument to the atom 〈iB , idT (B)〉 : T (B) // //B×T (B) in the topos E/T (B)

yields that iB : T (B) // //B is contained in Q.

Recalling that SP (X) = K(X) and that the atoms in P (X) are the singletons we get Q is a

fixpoint for (∗) in the case B = P (X). Thus there exists a morphism σegX : K(X) // //KK(X)

such that

K(X)

P (X)

K(X)

OO

kX

OO

P (X) PP (X)//
↓segP (X)

// PP (X)

KK(X)

PP (X)PP (X) PK(X)
P (kX)

// PK(X)

KK(X)

OO

kK(X)

OO

K(X) KK(X)
σegX //

is commutative.

If X is K-finite. then tX ◦ σegX is the proof that K(X) is K-finite as ptrueXq◦ ↓segP (X) ◦
P (kX) = ptrueK(X)q.

Taking into account these remarks and 5) above we record

Theorem B.2. An object X in an elementary topos E is K-finite iff K(X) is K-finite.
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